Physical activity is a health-protective factor that can reduce disease risk in later life. Designing interventions that increase physical activity participation are paramount but need to increase potency and reduce the time to effectiveness. This paper aims to outline one transdisciplinary, team science effort to increase behavioral intervention potency through the integration of the autonomous cognition model whereby data guide each decision in developing a school-based physical activity intervention. Examples of data collected by stage and a summary of potential action steps are provided.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: Christine Julien x
- Refine by Access: All Content x
Physical Activity Interventions to Reduce Metabolic Risk Factors to Cognitive Health
Darla Castelli and Christine Julien
Concurrent Validity of a Commercial Wireless Trunk Triaxial Accelerometer System for Gait Analysis
Roel De Ridder, Julien Lebleu, Tine Willems, Cedric De Blaiser, Christine Detrembleur, and Philip Roosen
Context: Wearable sensor devices have notable advantages, such as cost-effectiveness, easy to use, and real-time feedback. Wirelessness ensures full-body motion, which is required during movement in a challenging environment such as during sports. Research on the reliability and validity of commercially available systems, however, is indispensable. Objective: To confirm the test–retest reliability and concurrent validity of a commercially available body-worn sensor—BTS G-WALK® sensor system—for spatiotemporal gait parameters with the GAITRite® walkway system as golden standard. Design: Reliability and concurrent validity study. Setting: Laboratory setting. Participants: Thirty healthy subjects. Main Outcome Measures: Spatiotemporal parameters: speed, cadence, stride length, stride duration, stance duration, swing duration, double support, and single support. Results: In terms of test–retest reliability of the BTS G-WALK® sensor system, intraclass correlation coefficient values for both the spatial and temporal parameters were excellent between consecutive measurements on the same day with intraclass correlation coefficient values ranging from .85 to .99. In terms of validity, intraclass correlation coefficient values between measurement systems showed excellent levels of agreement for speed, cadence, stride length, and stride duration (range = .88–.97), and showed poor to moderate levels of agreement (range = .12–.47) for single/double support and swing/stance duration. Bland–Altman plots showed overall percentage bias values equal to or smaller than 3% with limits of agreement ≤15% (speed, cadence, stride length, stride duration, swing duration, and stance duration). Only for single and double support, the limits of agreement were higher with, respectively, −15.4% to 19.5% and −48.0% to 51.4%. Conclusion: The BTS G-WALK® sensor system is reliable for all measured spatiotemporal parameters. In terms of validity, excellent concurrent validity was shown for speed, cadence, stride length, and stride duration. Cautious interpretation is necessary for temporal parameters based on final foot contact (stance, swing, and single/double support time).
Movement Patterns and Metabolic Responses During an International Rugby Sevens Tournament
Anthony Couderc, Claire Thomas, Mathieu Lacome, Julien Piscione, Julien Robineau, Rémi Delfour-Peyrethon, Rachel Borne, and Christine Hanon
Purpose:
To investigate the running demands and associated metabolic perturbations during an official rugby sevens tournament.
Methods:
Twelve elite players participated in 7 matches wearing GPS units. Maximal sprinting speed (MSS) and maximal aerobic speed (MAS) were measured. High-intensity threshold was individualized relative to MAS (>100% of MAS), and very-high-intensity distance was reported relative to both MAS and MSS. Blood samples were taken at rest and after each match.
Results:
Comparison of prematch and postmatch samples revealed significant (P < .01) changes in pH (7.41–7.25), bicarbonate concentration ([HCO3– ]) (24.8–13.6 mmol/L), and lactate concentration ([La]) (2.4–11.9 mmol/L). Mean relative total distance covered was 91 ± 13 m/min with ~17 m/min at high-intensity. Player status (whole-match or interchanged players), match time, and total distance covered had no significant impact on metabolic indices. Relative distance covered at high intensity was negatively correlated with pH and [HCO3– ] (r = .44 and r = .42, respectively; P < .01) and positively correlated with [La] (r = .36; P < .01). Total distance covered and distance covered at very high intensity during the 1-min peak activity in the last 3 min of play were correlated with [La] (r = .39 and r = .39, respectively; P < .01).
Conclusions:
Significant alterations in blood-metabolite indices from prematch to postmatch sampling suggest that players were required to tolerate a substantial level of acidosis related to metabolite accumulation. In addition, the ability to produce energy via the glycolytic energy pathway seems to be a major determinant in match-related running performance.