Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Christof A. Leicht x
Clear All Modify Search
Restricted access

Katy E. Griggs, Christof A. Leicht, Michael J. Price and Victoria L. Goosey-Tolfrey

Purpose:

Individuals with a spinal-cord injury have impaired thermoregulatory control due to a loss of sudomotor and vasomotor effectors below the lesion level. Thus, individuals with high-level lesions (tetraplegia) possess greater thermoregulatory impairment than individuals with lower-level lesions (paraplegia). Previous research has not reflected the intermittent nature and modality of wheelchair court sports or replicated typical environmental temperatures. Hence, the purpose of this study was to investigate the thermoregulatory responses of athletes with tetraplegia and paraplegia during an intermittent-sprint protocol (ISP) and recovery in cool conditions.

Methods:

Sixteen wheelchair athletes, 8 with tetraplegia (TP, body mass 65.2 ± 4.4 kg) and 8 with paraplegia (body mass 68.1 ± 12.3 kg), completed a 60-min ISP in 20.6°C ± 0.1°C, 39.6% ± 0.8% relative humidity on a wheelchair ergometer, followed by 15 min of passive recovery. Core temperature (T core) and mean (T sk) and individual skin temperatures were measured throughout.

Results:

Similar external work (P = .70, ES = 0.20) yet a greater T core (P < .05, ES = 2.27) and T sk (P < .05, ES = 1.50) response was demonstrated by TP during the ISP.

Conclusions:

Despite similar external work, a marked increase in Tcore in TP during exercise and recovery signifies that thermoregulatory differences between the groups were predominantly due to differences in heat loss. Further increases in thermal strain were not prevented by the active and passive recovery between maximal-effort bouts of the ISP, as T core continually increased throughout the protocol in TP.

Restricted access

Ben T. Stephenson, Eleanor Hynes, Christof A. Leicht, Keith Tolfrey and Victoria L. Goosey-Tolfrey

Purpose: To gain an exploratory insight into the relation between training load (TL), salivary secretory immunoglobulin A (sIgA), and upper respiratory tract illness (URI) in elite paratriathletes. Methods: Seven paratriathletes were recruited. Athletes provided weekly saliva samples for the measurement of sIgA over 23 consecutive weeks (February to July) and a further 11 consecutive weeks (November to January). sIgA was compared to individuals’ weekly training duration, external TL, and internal TL, using time spent in predetermined heart-rate zones. Correlations were assessed via regression analyses. URI was quantified via weekly self-report symptom questionnaire. Results: There was a significant negative relation between athletes’ individual weekly training duration and sIgA secretion rate (P = .028), with changes in training duration accounting for 12.7% of the variance (quartiles: 0.2%, 19.2%). There was, however, no significant relation between external or internal TL and sIgA parameters (P ≥ .104). There was no significant difference in sIgA when URI was present or not (101% vs 118% healthy median concentration; P ≥ .225); likewise, there was no difference in sIgA when URI occurred within 2 wk of sampling or not (83% vs 125% healthy median concentration; P ≥ .120). Conclusions: Paratriathletes’ weekly training duration significantly affects sIgA secretion rate, yet the authors did not find a relation between external or internal TL and sIgA parameters. Furthermore, it was not possible to detect any link between sIgA and URI occurrence, which throws into question the potential of using sIgA as a monitoring tool for early detection of illness.

Restricted access

Ben T. Stephenson, Christof A. Leicht, Keith Tolfrey and Victoria L. Goosey-Tolfrey

Purpose: In able-bodied athletes, several hormonal, immunological, and psychological parameters are commonly assessed in response to intensified training due to their potential relationship to acute fatigue and training/nontraining stress. This has yet to be studied in Paralympic athletes. Methods: A total of 10 elite paratriathletes were studied for 5 wk around a 14-d overseas training camp whereby training load was 137% of precamp levels. Athletes provided 6 saliva samples (1 precamp, 4 during camp, and 1 postcamp) for cortisol, testosterone, and secretory immunoglobulin A; weekly psychological questionnaires (Profile of Mood State [POMS] and Recovery-Stress Questionnaire for Athletes [RESTQ-Sport]); and daily resting heart rate and subjective wellness measures including sleep quality and quantity. Results: There was no significant change in salivary cortisol, testosterone, cortisol:testosterone ratio, or secretory immunoglobulin A during intensified training (P ≥ .090). Likewise, there was no meaningful change in resting heart rate or subjective wellness measures (P ≥ .079). Subjective sleep quality and quantity increased during intensified training (P ≤ .003). There was no significant effect on any POMS subscale other than lower anger (P = .049), whereas there was greater general recovery and lower sport and general stress from RESTQ-Sport (P ≤ .015). Conclusions: There was little to no change in parameters commonly associated with the fatigued state, which may relate to the training-camp setting minimizing external life stresses and the careful management of training loads from coaches. This is the first evidence of such responses in Paralympic athletes.

Restricted access

Christof A. Leicht, Nicolette C. Bishop, Thomas A.W. Paulson, Katy E. Griggs and Victoria L. Goosey-Tolfrey

Purpose:

Altered autonomic innervation in tetraplegic individuals has been shown to depress certain immune parameters at rest and alter exercise-related salivary immunoglobulin A (sIgA) responses. The purpose of this study was to examine resting sIgA responses as a function of training load and episodes of upper respiratory symptoms (URS) in elite tetraplegic athletes.

Methods:

Resting saliva samples were obtained from 14 tetraplegic athletes at 12 predefined time points over 5 months and analyzed for sIgA. Occurrence of self-reported URS and training load was recorded throughout the study’s duration. Regression analyses were performed to investigate the relationship between sIgA responses and training load. Furthermore, the relationships between sIgA responses and URS occurrence were examined.

Results:

sIgA secretion rate was negatively correlated with training load (P = .04), which only accounted for 8% of the variance. No significant relationships were found between sIgA responses and subsequent URS occurrence. Finally, sIgA responses did not differ between athletes with and without recorded URS during the study period.

Conclusions:

In line with findings in ablebodied athletes, negative relationships between sIgA secretion rate and training load were found in tetraplegic athletes. This may explain some of the higher infection risk in wheelchair athletes with a high training load, which has been previously observed in paraplegic athletes. However, the nonsignificant relationship between sIgA responses and URS occurrence brings into question the use of sIgA as a prognostic tool for the early detection of URS episodes in the studied population.