Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Christopher D. Ellis x
Clear All Modify Search
Restricted access

Jun-Hyun Kim, Chanam Lee, Norma E. Olvera and Christopher D. Ellis

Background:

Childhood obesity and its comorbidities have become major public health challenges in the US. While previous studies have investigated the roles of land uses and transportation infrastructure on obesity, limited research has examined the influence of landscape spatial patterns. The purpose of this study was to examine the association between landscape spatial patterns and obesity in Hispanic children.

Methods:

Participants included 61 fourth- and fifth-grade Hispanic children from inner-city neighborhoods in Houston, TX. BMI z-scores were computed based on objectively-measured height and weight from each child. Parental and child surveys provided sociodemographic and physical activity data. Landscape indices were used to measure the quality of landscape spatial patterns surrounding each child’s home by utilizing Geographic Information Systems and remote sensing analyses using aerial photo images.

Results:

After controlling for sociodemographic factors, in the half-mile airline buffer, more tree patches and well-connected landscape patterns were negatively correlated with their BMI z-scores. Furthermore, larger sizes of urban forests and tree patches were negatively associated with children’s BMI z-scores in the half-mile network buffer assessment.

Conclusions:

This study suggests that urban greenery requires further attention in studies aimed at identifying environmental features that reduce childhood obesity.

Restricted access

Dustin R. Grooms, Adam W. Kiefer, Michael A. Riley, Jonathan D. Ellis, Staci Thomas, Katie Kitchen, Christopher A. DiCesare, Scott Bonnette, Brooke Gadd, Kim D. Barber Foss, Weihong Yuan, Paula Silva, Ryan Galloway, Jed A. Diekfuss, James Leach, Kate Berz and Gregory D. Myer

Context: A limiting factor for reducing anterior cruciate ligament injury risk is ensuring that the movement adaptions made during the prevention program transfer to sport-specific activity. Virtual reality provides a mechanism to assess transferability, and neuroimaging provides a means to assay the neural processes allowing for such skill transfer. Objective: To determine the neural mechanisms for injury risk–reducing biomechanics transfer to sport after anterior cruciate ligament injury prevention training. Design: Cohort study. Setting: Research laboratory. Participants: Four healthy high school soccer athletes. Interventions: Participants completed augmented neuromuscular training utilizing real-time visual feedback. An unloaded knee extension task and a loaded leg press task were completed with neuroimaging before and after training. A virtual reality soccer-specific landing task was also competed following training to assess transfer of movement mechanics. Main Outcome Measures: Landing mechanics during the virtual reality soccer task and blood oxygen level–dependent signal change during neuroimaging. Results: Increased motor planning, sensory and visual region activity during unloaded knee extension and decreased motor cortex activity during loaded leg press were highly correlated with improvements in landing mechanics (decreased hip adduction and knee rotation). Conclusion: Changes in brain activity may underlie adaptation and transfer of injury risk–reducing movement mechanics to sport activity. Clinicians may be able to target these specific brain processes with adjunctive therapy to facilitate intervention improvements transferring to sport.