Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Christopher Nulty x
Clear All Modify Search
Restricted access

Conall F. Murtagh, Christopher Nulty, Jos Vanrenterghem, Andrew O’Boyle, Ryland Morgans, Barry Drust and Robert M. Erskine

Purpose: To investigate differences in neuromuscular factors between elite and nonelite players and to establish which factors underpin direction-specific unilateral jump performance. Methods: Elite (n = 23; age, 18.1 [1.0] y; body mass index, 23.1 [1.8] kg·m−2) and nonelite (n = 20; age, 22.3 [2.7] y; body mass index, 23.8 [1.8] kg·m−2) soccer players performed 3 unilateral countermovement jumps (CMJs) on a force platform in the vertical, horizontal-forward, and medial directions. Knee extension isometric maximum voluntary contraction torque was assessed using isokinetic dynamometry. Vastus lateralis fascicle length, angle of pennation, quadriceps femoris muscle volume (M vol), and physiological cross-sectional area (PCSA) were assessed using ultrasonography. Vastus lateralis activation was assessed using electromyography. Results: Elite soccer players presented greater knee extensor isometric maximum voluntary contraction torque (365.7 [66.6] vs 320.1 [62.6] N·m; P = .045), M vol (2853 [508] vs 2429 [232] cm3; P = .001), and PCSA (227 [42] vs 193 [25] cm2; P = .003) than nonelite. In both cohorts, unilateral vertical and unilateral medial CMJ performance correlated with M vol and PCSA (r ≥ .310, P ≤ .043). In elite soccer players, unilateral vertical and unilateral medial CMJ performance correlated with upward phase vastus lateralis activation and angle of pennation (r ≥ .478, P ≤ .028). Unilateral horizontal-forward CMJ peak vertical power did not correlate with any measure of muscle size or activation but correlated inversely with angle of pennation (r = −.413, P = .037). Conclusions: While larger and stronger quadriceps differentiated elite from nonelite players, relationships between neuromuscular factors and unilateral jump performance were shown to be direction-specific. These findings support a notion that improving direction-specific muscular power in soccer requires improving a distinct neuromuscular profile.