Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Christopher R. France x
Clear All Modify Search
Restricted access

Daohang Sha, Christopher R. France and James S. Thomas

The effect of target location, speed, and handedness on the average total mechanical energy and movement efficiency is studied in 15 healthy subjects (7 males and 8 females with age 22.9 ± 1.79 years old) performing full body reaching movements. The average total mechanical energy is measured as the time average of integration of joint power, potential energy, and kinetic energy respectively. Movement efficiency is calculated as the ratio of total kinetic energy to the total joint power and potential energy. Results show that speed and target location have significant effects on total mechanical energy and movement efficiency, but reaching hand only effects kinetic energy. From our findings we conclude that (1) efficiency in whole body reaching is dependent on whether the height of the body center of mass is raised or lowered during the task; (2) efficiency is increased as movement speed is increased, in part because of greater changes in potential energy; and (3) the CNS does not appear to use movement efficiency as a primary planning variable in full body reaching. It may be dependent on a combination of other factors or constraints.