Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Cyril Schmit x
Clear All Modify Search
Restricted access

Cyril Schmit, Rob Duffield, Christophe Hausswirth, Aaron J. Coutts and Yann Le Meur


To describe the effect of the initial perceptual experience from heat familiarization on the pacing profile during a freepaced endurance time trial (TT) compared with temperate conditions.


Two groups of well-trained triathletes performed two 20-km TTs in either hot (35°C and 50% relative humidity [RH], n = 12) or temperate (21°C and 50% RH, n = 22) conditions, after standardization of training for each group before both trials. To ensure no physiological acclimation differences between conditions, the TTs for both groups were separated by 11 ± 4 d.


Performance improvement in the heat (11 ± 24 W) from the 1st to 2nd trial appeared comparable to that in temperate conditions (8 ± 14 W, P = .67). However, the specific alteration in pacing profile in the heat was markedly different than temperate conditions, with a change from “positive” to an “even” pacing strategy.


Altered perceptions of heat during heat familiarization, rather than physiological acclimatization per se, may mediate initial changes in pacing and TT performance in the heat. These results highlight the need for athletes without time for sufficient heat acclimatization to familiarize themselves with hot conditions to reduce the uncertainty from behavior-based outcomes that may impede performance.

Restricted access

Cyril Schmit, Rob Duffield, Christophe Hausswirth, Jeanick Brisswalter and Yann Le Meur

Purpose: To determine the effect of high- versus low-intensity training in the heat and ensuing taper period in the heat on endurance performance. Methods: In total, 19 well-trained triathletes undertook 5 days of normal training and a 1-wk taper including either low- (heat acclimation [HA-L], n = 10) or high-intensity (HA-H, n = 9) training sessions in the heat (30°C, 50% relative humidity). A control group (n = 10) reproduced their usual training in thermoneutral conditions. Indoor 20-km cycling time trials (35°C, 50% relative humidity) were performed before (Pre) and after the main heat exposure (Mid) and after the taper (Post). Results: Power output remained stable in the control group from Pre to Mid (effect size: −0.10 [0.26]) and increased from Mid to Post (0.18 [0.22]). The HA-L group demonstrated a progressive increase in performance from Pre to Mid (0.62 [0.33]) and from Mid to Post (0.53 [0.30]), alongside typical physiological signs of HA (reduced core temperature and heart rate and increased body-mass loss). While the HA-H group presented similar adaptations, increased perceived fatigue and decreased performance at Mid (−0.35 [0.26]) were evidenced and reversed at Post (0.50 [0.20]). No difference in power output was reported at Post between the HA-H and control groups. Conclusion: HA-H can quickly induce functional overreaching in nonacclimatized endurance athletes. As it was associated with a weak subsequent performance supercompensation, coaches and athletes should pay particular attention to training monitoring during a final preparation in the heat and reduce training intensity when early signs of functional overreaching are identified.