Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Dale R. Wagner x
Clear All Modify Search
Restricted access

Caroline Berry and Dale R. Wagner

Context:

Pseudoephedrine (PSE) is an over-the-counter decongestant that might have ergogenic effects. The World Anti-Doping Agency has prohibited large doses (>150 μg/mL) of PSE, while the National College Athletic Association (NCAA) does not include it on their banned-substance list.

Purpose:

This study examined the effect of body-weight dosing of PSE on 800-m-run times of NCAA female runners.

Methods:

Fifteen NCAA female track athletes volunteered to participate in the randomized, double-blind, crossover design. Participants were given 2.5 mg/kg PSE or placebo in trials separated by a week. Ninety minutes postingestion, participants completed an 800-m individual time trial on an indoor track. Finishing time was recorded with an automated video timing device. Heart rate and anxiety state scores were recorded immediately after each trial.

Results:

Fourteen runners completed both trials, and 1 was an outlier: N = 13. Despite the dose being well above normal therapeutic levels (144 ± 17 mg), there was no significant difference (P = .92) in 800-m times between PSE (2:39.447 ± 9.584) and placebo (2:39.372 ± 9.636) trials, in postexercise heart rate (P = .635; PSE = 177.9 ± 14.5 beats/min, placebo = 178.4 ± 18.5 beats/min), or in anxiety-state levels (P = .650; PSE = 38.4 ± 11.6, placebo = 38.1 ± 8.8).

Conclusion:

A 2.5-mg/kg dose of PSE had no effect on 800-m performance for female NCAA runners. More research is needed to determine if PSE should be a specified banned substance.

Restricted access

Nnamdi Gwacham and Dale R. Wagner

Consumption of energy drinks is common among athletes; however, there is a lack of research on the efficacy of these beverages for short-duration, intense exercise. The purpose of this research was to investigate the acute effects of a low-calorie caffeine-taurine energy drink (AdvoCare Spark) on repeated sprint performance and anaerobic power in National Collegiate Athletic Association Division I football players. Twenty football players (age 19.7 ± 1.8 yr, height 184.9 ± 5.3 cm, weight 100.3 ± 21.7 kg) participated in a double-blind, randomized crossover study in which they received the energy drink or an isoenergetic, isovolumetric, noncaffeinated placebo in 2 trials separated by 7 days. The Running Based Anaerobic Sprint Test, consisting of six 35-m sprints with 10 s of rest between sprints, was used to assess anaerobic power. Sprint times were recorded with an automatic electronic timer. The beverage treatment did not significantly affect power (F = 3.84, p = .066) or sprint time (F = 3.06, p = .097). However, there was a significant interaction effect between caffeine use and the beverage for sprint times (F = 4.62, p = .045), as well as for anaerobic power (F = 5.40, p = .032), indicating a confounding effect. In conclusion, a caffeine-taurine energy drink did not improve the sprint performance or anaerobic power of college football players, but the level of caffeine use by the athletes likely influenced the effect of the drink.

Restricted access

Erin Coppin, Edward M. Heath, Eadric Bressel and Dale R. Wagner

Purpose:

The aim of this study was to develop reference values for the Wingate Anaerobic Test (WAnT) for peak power (PP), mean power (MP), and fatigue index (FI) in NCAA Division IA male athletes.

Methods:

Seventy-seven athletes (age 20.8 ± 1.8 y, mass 84.4 ± 9.4 kg, height 183.9 ± 6.2 cm) participating in American football (n = 52) and track and field (n = 25) performed a 30-s WAnT resisted at 0.085 kp/kg body mass (BM).

Results:

Absolute mean (± SD) values for PP and MP were 1084.2 ± 137.0 and 777.1 ± 80.9 W, respectively, whereas values normalized to BM were 12.9 ± 1.5 and 9.3 ± 0.9 W/kg BM, respectively. Mean FI values were 49.1% ± 8.4%. PP outputs >13.6, 12.4–13.6, and <12.4 W/kg BM were classified as high, medium, and low, respectively. MP outputs >9.8, 9.0–9.8, and <9.0 W/kg BM were classified as high, medium, and low, respectively.

Conclusions:

The reference values developed in this study can be used in various athletic training and research programs to more accurately assess athletes’ anaerobic fitness and to monitor changes resulting from anaerobic training.

Restricted access

Dale R. Wagner

Edited by Kathleen M. Laquale

Restricted access

Donna W. Lockner, Vivian H. Heyward, Sharon E. Griffin, Martim B. Marques, Lisa M. Stolarczyk and Dale R. Wagner

The Segal fatness-specific bioelectrical impedance (BIA) equations are useful for predicting fat-free mass (FFM). Stolarczyk et al, proposed a modified method of averaging the two equations for individuals who are neither lean nor obese, thus eliminating the need to know % BF a priori. To cross-validate this modification, we compared FFM determined using the averaging method versus hydrostatic weighing for 76 adults. Per the averaging method, accuracy for males was excellent (r = .91, SEE = 2.7kg, E = 2.7kg), with 78% of individuals within ± 3.5% BF predicted by hydrostatic weighing. Accuracy for females was lower (r = .88, SEE = 3.0kg, E = 3.1 kg), with %BF of 51% within ±3.5% of the reference method. The relative ease and practicality of the averaging method and the results of this study indicate this method may be useful with a diverse group.