Search Results
You are looking at 1 - 10 of 29 items for
- Author: Daniel Boullosa x
- Refine by Access: All Content x
Nihil Novum Sub Sole
Daniel Boullosa
The Right Journal, Editor, and Referees, at the Right Time
Daniel Boullosa
Study Designs to Reduce the Gap Between Science and Practice in Sport
Daniel Boullosa
Sensitivity of the iLOAD® Application for Monitoring Changes in Barbell Velocity Following Power- and Strength-Oriented Resistance Training Programs
Alejandro Pérez-Castilla, Daniel Boullosa, and Amador García-Ramos
Objective: To evaluate the sensitivity of the iLOAD® application to detect the changes in mean barbell velocity of complete sets following power- and strength-oriented resistance training (RT) programs. Methods: Twenty men were randomly assigned to a power training group (countermovement jump and bench press throw at 40% of the 1-repetition maximum [1RM]) or strength training group (back squat and bench press at 70% to 90% of 1RM). Single sets of 10 repetitions at 25% and 70% of 1RM during the back squat and bench press exercises were assessed before and after the 4-week RT programs simultaneously with the iLOAD® application and a linear velocity transducer. Results: The power training group showed a greater increment in velocity performance at the 25% of 1RM (effect size range = 0.66–1.53) and the 70% of 1RM (effect size range = 0.11–0.30). The percent change in mean velocity after the RT programs highly correlated between the iLOAD® application and the linear velocity transducer for the back squat (r range = .85–.88) and bench press (r range = .87–.93). However, the iLOAD® application revealed a 2% greater increase in mean velocity after training compared to the linear velocity transducer. Conclusions: The iLOAD® application is a cost-effective, portable, and easy-to-use tool which can be used to detect changes in mean barbell velocity after power- and strength-oriented RT programs.
Is It Time to Reconsider the Incremental Test Protocols?
Cristina Cortis, Andrea Fusco, Renato Barroso, Daniel Bok, Daniel Boullosa, Daniele Conte, and Carl Foster
Reliability of Heart Rate Variability in Children: Influence of Sex and Body Position During Data Collection
Carla Cristiane Silva, Maurizio Bertollo, Felipe Fossati Reichert, Daniel Alexandre Boullosa, and Fábio Yuzo Nakamura
Purpose:
To examine which body position and indices present better reliability of heart rate variability (HRV) measures in children and to compare the HRV analyzed in different body positions between sexes.
Method:
Twenty eutrophic prepubertal children of each sex participated in the study. The RR intervals were recorded using a portable heart rate monitor twice a day for 7 min in the supine, sitting, and standing positions. The reproducibility was analyzed using the intraclass correlation coefficient (ICC; two way mixed) and within-subject coefficient of variation (CV).Two-way ANOVA with repeated measures was used to compare the sexes.
Results:
High levels of reproducibility were indicated by higher ICC in the root-mean-square difference of successive normal RR intervals (RMSSD: 0.93 and 0.94) and Poincaré plot of the short-term RR interval variability (SD1: 0.92 and 0.94) parameters for boys and girls, respectively, in the supine position. The ICCs were lower in the sitting and standing positions for all HRV indices. In addition, the girls presented significantly higher values than the boys for SDNN and absolute high frequency (HF; p < .05) in the supine position.
Conclusions:
The supine position is the most reproducible for the HRV indices in both sexes, especially the vagal related indices.
Concurrent Fatigue and Potentiation in Endurance Athletes
Daniel A. Boullosa, José L. Tuimil, Luis M. Alegre, Eliseo Iglesias, and Fernando Lusquiños
Purpose:
Countermovement jump (CMJ) and maximum running speed over a distance of 20 m were evaluated for examination of the concurrent fatigue and post-activation potentiation (PAP) in endurance athletes after an incremental feld running test.
Methods:
Twenty-two endurance athletes performed two attempts of CMJ on a force plate and maximum running speed test before and following the Université de Montréal Track Test (UMTT).
Results:
The results showed an improvement in CMJ height (3.6%) after UMTT that correlated with the increment in peak power (3.4%), with a concurrent peak force loss (–10.8%) that correlated with peak power enhancement. The athletes maintained their 20 m sprint performance after exhaustion. Cluster analysis reinforced the association between CMJ and peak power increments in responders with a reported correlation between peak power and sprint performance increments (r = .623; P = .041); nonresponders showed an impairment of peak force, vertical stiffness, and a higher vertical displacement of the center of mass during the countermovement that correlated with lactate concentration (r = –0.717; P = .02).
Conclusions:
It can be suggested that PAP could counteract the peak force loss after exhaustion, allowing the enhancement of CMJ performance and the maintenance of sprint ability in endurance athletes after the UMTT. From these results, the evaluation of CMJ after incremental running tests for the assessment of muscular adaptations in endurance athletes can be recommended.
Why Should Athletes Brake Fast? Influence of Eccentric Velocity on Concentric Performance During Countermovement Jumps at Different Loads
Jose L. Hernández-Davó, Rafael Sabido, Manuel Omar-García, and Daniel Boullosa
Purpose: The aim of the present study was to analyze the effect of different eccentric tempos on eccentric kinetics and kinematics and the subsequent concentric performance when performing countermovement jumps against different loads. Methods: After 1-repetition-maximum assessment and 2 familiarization sessions, 13 well-trained participants performed, in randomized order, 12 sets (4 tempos × 3 loads) of 4 repetitions of the loaded countermovement-jump exercise. The eccentric tempos analyzed were 5 and 2 seconds, as fast as possible, and accelerated (ie, without pause between repetitions), while the loads used were 30%, 50%, and 70% of 1-repetition maximum. Several kinetic and kinematic variables during both phases were recorded by linking a linear position transducer to the barbell. Results: The eccentric work was greater in the accelerated condition despite no changes in the eccentric depth. The peak and mean propulsive velocities were greater in the as-fast-as-possible and accelerated conditions. Correlation analysis showed that, compared with the 5-second condition, the increased concentric performance in the accelerated condition was related to the difference in eccentric work performed in the last 100 milliseconds of the eccentric phase (r > .770). Conclusions: Contrary to current practices, the current study highlights the need for performing the eccentric phase of loaded countermovement jumps, a common exercise performed by athletes for both training and evaluation purposes, as fast as possible. This allows not only a greater eccentric work but also improved concentric performance.
The Limitations of Systematic Reviews With Meta-Analyses in Sport Science
Daniel Boullosa, David Behm, Sebastián Del Rosso, Moritz Schumann, Kenji Doma, and Carl Foster
The Fine-Tuning Approach for Training Monitoring
Daniel Boullosa, João Gustavo Claudino, Jaime Fernandez-Fernandez, Daniel Bok, Irineu Loturco, Matthew Stults-Kolehmainen, Juan García-López, and Carl Foster
Purpose: Monitoring is a fundamental part of the training process to guarantee that the programmed training loads are executed by athletes and result in the intended adaptations and enhanced performance. A number of monitoring tools have emerged during the last century in sport. These tools capture different facets (eg, psychophysiological, physical, biomechanical) of acute training bouts and chronic adaptations while presenting specific advantages and limitations. Therefore, there is a need to identify what tools are more efficient in each sport context for better monitoring of training process. Methods and Results: We present and discuss the fine-tuning approach for training monitoring, which consists of identifying and combining the best monitoring tools with experts’ knowledge in different sport settings, designed to improve (1) the control of actual training loads and (2) understanding of athletes’ training adaptations. Instead of using single-tool approaches or merely subjective decision making, the identification of the best combination of monitoring tools to assist experts’ decisions in each specific context (ie, triangulation) is necessary to better understand the link between acute and chronic adaptations and their impact on health and performance. Future studies should elaborate on the identification of the best combination of monitoring tools for each specific sport setting. Conclusion: The fine-tuning monitoring approach requires the simultaneous use of several valid and practical tools, instead of a single tool, to improve the effectiveness of monitoring practices when added to experts’ knowledge.