Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Daniel Hammes x
Clear All Modify Search
Restricted access

Sabrina Skorski, Stefan Skorski, Oliver Faude, Daniel Hammes and Tim Meyer

Purpose:

To investigate whether anthropometric profiles and fitness measures vary according to birth-date distribution in the German national youth soccer teams and to analyze whether there is a difference in the chance of becoming a professional soccer player depending on birth quarter (BQ).

Methods:

First, 554 players were divided into 6 age groups (U16–U21), each subdivided into 4 BQs. Every player performed at least one 30-m sprint, a countermovement jump, and an incremental test to determine individual anaerobic threshold. For players performing more than 1 test within a team, the best 1 was included. Since some players were part of several different teams, a total of 832 data sets from 495 individual soccer players, all born from 1987 to 1995, divided into 6 age categories (U16–U21) were included.

Results:

Overall, more players were born in BQ1 than in all other BQs (P < .05). No significant difference between BQs could be observed in any anthropometric or performance characteristics (P > .18). Players born in BQ4 were more likely to become professional than those born in BQ1 (odds ratio 3.04, confidence limits 1.53–6.06).

Conclusion:

A relative age effect exists in elite German youth soccer, but it is not explained by an advantage in anthropometric or performance-related parameters. Younger players selected into national teams have a greater chance to become professionals later in their career.

Restricted access

Daniel Hammes, Sabrina Skorski, Sascha Schwindling, Alexander Ferrauti, Mark Pfeiffer, Michael Kellmann and Tim Meyer

The Lamberts and Lambert Submaximal Cycle Test (LSCT) is a novel test designed to monitor performance and fatigue/recovery in cyclists. Studies have shown the ability to predict performance; however, there is a lack of studies concerning monitoring of fatigue/recovery. In this study, 23 trained male cyclists (age 29 ± 8 y, VO2max 59.4 ± 7.4 mL · min−1 · kg−1) completed a training camp. The LSCT was conducted on days 1, 8, and 11. After day 1, an intensive 6-day training period was performed. Between days 8 and 11, a recovery period was realized. The LSCT consists of 3 stages with fixed heart rates of 6 min at 60% and 80% and 3 min at 90% of maximum heart rate. During the stages, power output and rating of perceived exertion (RPE) were determined. Heart-rate recovery was measured after stage 3. Power output almost certainly (standardized mean difference: 1.0) and RPE very likely (1.7) increased from day 1 to day 8 at stage 2. Power output likely (0.4) and RPE almost certainly (2.6) increased at stage 3. From day 8 to day 11, power output possibly (–0.4) and RPE likely (–1.5) decreased at stage 2 and possibly (–0.1) and almost certainly (–1.9) at stage 3. Heart-rate recovery was likely (0.7) accelerated from day 1 to day 8. Changes from day 8 to day 11 were unclear (–0.1). The LSCT can be used for monitoring fatigue and recovery, since parameters were responsive to a fatiguing training and a following recovery period. However, consideration of multiple LSCT variables is required to interpret the results correctly.