Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Daniel J. Green x
Clear All Modify Search
Restricted access

Ali M. McManus, Nathan R. Sletten and Daniel J. Green

Purpose: The effect of exercise intensity on vasodilator function is poorly understood in children. The authors compared the acute effect of high-intensity interval exercise (HIIE) with moderate-intensity steady-state exercise (MISS) on postexercise vasodilation and shear patterns in 7- to 12- year-old children. Methods: Superficial femoral artery diameter, shear rates, and flow-mediated dilation were measured pre, immediately following (post), and 1 hour after (post60) HIIE (six 1-min sprints at 90% peak power [Wmax], with 1-min recovery) and MISS (15 min at 44% Wmax). Results: Baseline superficial femoral artery diameter increased similarly following both HIIE (pre 4.23 [0.41] mm, post 4.73 [0.56] mm) and MISS (pre 4.28 [0.56] mm, post 4.59 [0.64] mm), returning to preexercise values post60. Blood flow and antegrade shear rate were increased post HIIE and MISS, but to a greater extent, post HIIE (P < .05). Retrograde shear rate was attenuated post both exercise conditions and remained post60 (P < .001). There was a decline in flow-mediated dilation postexercise (HIIE Δ −2.9%; MISS Δ −2.4%), which was no longer apparent when corrected for baseline diameter. Conclusion: Acute bouts of external work-matched HIIE or MISS exert a similar impact on shear-mediated conduit artery vasodilation and flow-mediated dilation in children, and this is reversed 1 hour after exercise.

Restricted access

Scott Cocking, Mathew G. Wilson, David Nichols, N. Timothy Cable, Daniel J. Green, Dick H. J. Thijssen and Helen Jones

Introduction: Ischemic preconditioning (IPC) may enhance endurance performance. No previous study has directly compared distinct IPC protocols for optimal benefit. Purpose: To determine whether a specific IPC protocol (ie, number of cycles, amount of muscle tissue, and local vs remote occlusion) elicits greater performance outcomes. Methods: Twelve cyclists performed 5 different IPC protocols 30 min before a blinded 375-kJ cycling time trial (TT) in a laboratory. Responses to traditional IPC (4 × 5-min legs) were compared with those to 8 × 5-min legs and sham (dose cycles), 4 × 5-min unilateral legs (dose tissue), and 4 × 5-min arms (remote). Rating of perceived exertion and blood lactate were recorded at each 25% TT completion. Power (W), heart rate (beats/min), and oxygen uptake (V˙O2) (mL · kg−1 · min−1) were measured continuously throughout TTs. Magnitude-based-inference statistics were employed to compare variable differences to the minimal practically important difference. Results: Traditional IPC was associated with a 17-s (0, 34) faster TT time than sham. Applying more dose cycles (8 × 5 min) had no impact on performance. Traditional IPC was associated with likely trivial higher blood lactate and possibly beneficial lower V˙O2 responses vs sham. Unilateral IPC was associated with 18-s (−11, 48) slower performance than bilateral (dose tissue). TT times after remote and local IPC were not different (0 [−16, 16] s). Conclusion: The traditional 4 × 5-min (local or remote) IPC stimulus resulted in the fastest TT time compared with sham; there was no benefit of applying a greater number of cycles or employing unilateral IPC.

Restricted access

Philo U. Saunders, Christoph Ahlgrim, Brent Vallance, Daniel J. Green, Eileen Y. Robertson, Sally A. Clark, Yorck O. Schumacher and Christopher J. Gore


To quantify physiological and performance effects of hypoxic exposure, a training camp, the placebo effect, and a combination of these factors.


Elite Australian and International race walkers (n = 17) were recruited, including men and women. Three groups were assigned: 1) Live High:Train Low (LHTL, n = 6) of 14 h/d at 3000 m simulated altitude; 2) Placebo (n = 6) of 14 h/d of normoxic exposure (600 m); and 3) Nocebo (n = 5) living in normoxia. All groups undertook similar training during the intervention. Physiological and performance measures included 10-min maximal treadmill distance, peak oxygen uptake (VO2peak), walking economy, and hemoglobin mass (Hbmass).


Blinding failed, so the Placebo group was a second control group aware of the treatment. All three groups improved treadmill performance by approx. 4%. Compared with Placebo, LHTL increased Hbmass by 8.6% (90% CI: 3.5 to 14.0%; P = .01, very likely), VO2peak by 2.7% (-2.2 to 7.9%; P = .34, possibly), but had no additional improvement in treadmill distance (-0.8%, -4.6 to 3.8%; P = .75, unlikely) or economy (-8.2%, -24.1 to 5.7%; P = .31, unlikely). Compared with Nocebo, LHTL increased Hbmass by 5.5% (2.5 to 8.7%; P = .01, very likely), VO2peak by 5.8% (2.3 to 9.4%; P = .02, very likely), but had no additional improvement in treadmill distance (0.3%, -1.9 to 2.5%; P = .75, possibly) and had a decrease in walking economy (-16.5%, -30.5 to 3.9%; P = .04, very likely).


Overall, 3-wk LHTL simulated altitude training for 14 h/d increased Hbmass and VO2peak, but the improvement in treadmill performance was not greater than the training camp effect.