Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Daniel J. Peart x
Clear All Modify Search
Restricted access

Daniel J. Peart, Michael Graham, Callum Blades and Ian H. Walshe

Purpose: To examine whether the use of a carbohydrate mouth rinse (CMR) can improve multiple choice reaction time in amateur boxers during sparring. Methods: A total of 8 male amateur boxers (age 22 [3] y, stature 1.78 [0.07] m, mass 73.6 [14.2] kg) with at least 18 months of experience in the sport volunteered to participate in the study. All participants attended a familiarization session, followed by an experimental (CMR; 6% dextrose) and placebo trials in a randomized order. Participants undertook 3 × 2 minutes of sparring against an ability- and size-matched (stature and mass) opponent. Multiple choice reaction time and perceived exertion were measured before round 1 and then after each round. The respective mouth rinse was administered in a 25-mL solution for 10 seconds before each round. Magnitude-based inferences were used to compare the results of each round (mean difference; ±90% confidence limits). Results: The CMR was unlikely to have a beneficial effect on multiple choice reaction time compared with placebo (mean ± 90% confidence limits: 5 ± 9.5, 4 ± 3.4, −1 ± 8.5 lights for rounds 1 to 3, respectively) and had a possibly harmful effect on perceived exertion in round 1 (10 ± 20). There was an unlikely harmful effect on perceived exertion in rounds 2 (1 ± 12) and 3 (9 ± 23). Conclusion: There is no evidence to support the use of CMR during sparring in amateur boxers.

Restricted access

Daniel J. Peart, Andy Hensby and Matthew P. Shaw

The purpose of this study was to compare markers of hydration during submaximal exercise and subsequent time trial performance when consuming water (PW) or coconut water (CW). There was also a secondary aim to assess the palatability of CW during exercise and voluntary intake during intense exercise. 10 males (age 27.9 ± 4.9 years, body mass 78.1 ± 10.1kg, average max minute power 300.2 ± 28.2W) completed 60-min of submaximal cycling followed by a 10-km time trial on two occasions. During these trials participants consumed either PW or CW in a randomized manner, drinking a 250 ml of the assigned drink between 10–15 min, 25–30 min and 40–45 min, and then drinking ad libitum from 55-min until the end of the time trial. Body mass and urine osmolality were recorded preexercise and then after 30-min, 60-min, and post time trial. Blood glucose, lactate, heart rate, rate of perceived exertion (RPE; 6–20) and ratings of thirst, sweetness, nausea, fullness and stomach upset (1 =very low/none, 5= very high) were recorded during each drink period. CW did not significantly improve time trial performance compared with PW (971.4 ± 50.5 and 966.6 ± 44.8 s respectively; p = .698) and there was also no significant differences between trials for any of the physiological variables measured. However there were subjective differences between the beverages for taste, resulting in a significantly reduced volume of voluntary intake in the CW trial (115 ± 95.41 ml and 208.7 ± 86.22 ml; p < .001).

Open access

Emma L. Sweeney, Daniel J. Peart, Irene Kyza, Thomas Harkes, Jason G. Ellis and Ian H. Walshe

Experimental sleep restriction (SR) has demonstrated reduced insulin sensitivity in healthy individuals. Exercise is well-known to be beneficial for metabolic health. A single bout of exercise has the capacity to increase insulin sensitivity for up to 2 days. Therefore, the current study aimed to determine if sprint interval exercise could attenuate the impairment in insulin sensitivity after one night of SR in healthy males. Nineteen males were recruited for this randomized crossover study which consisted of four conditions—control, SR, control plus exercise, and sleep restriction plus exercise. Time in bed was 8 hr (2300–0700) in the control conditions and 4 hr (0300–0700) in the SR conditions. Conditions were separated by a 1-week entraining period. Participants slept at home, and compliance was assessed using wrist actigraphy. Following the night of experimental sleep, participants either conducted sprint interval exercise or rested for the equivalent duration. An oral glucose tolerance test was then conducted. Blood samples were obtained at regular intervals for measurement of glucose and insulin. Insulin concentrations were higher in SR than control (p = .022). Late-phase insulin area under the curve was significantly lower in sleep restriction plus exercise than SR (862 ± 589 and 1,267 ± 558; p = .004). Glucose area under the curve was not different between conditions (p = .207). These findings suggest that exercise improves the late postprandial response following a single night of SR.