Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Daniel Murray x
Clear All Modify Search
Restricted access

Ben Desbrow, Daniel Murray and Michael Leveritt

Purpose:

To investigate the effect of manipulating the alcohol and sodium content of beer on fluid restoration following exercise.

Method:

Seven male volunteers exercised on a cycle ergometer until 1.96 ± 0.25% body mass (mean± SD) was lost. Participants were then randomly allocated a different beer to consume on four separate occasions. Drinks included a low-alcohol beer (2.3% ABV; LightBeer), a low-alcohol beer with 25 mmol×L−1 of added sodium (LightBeer+25), a full-strength beer (4.8% ABV; Beer), or a full-strength beer with 25 mmol×L−1 of added sodium (Beer+25). Volumes consumed were equivalent to 150% of body mass loss during exercise and were consumed over a 1h period. Body mass and urine samples were obtained before and hourly for 4 hr after beverage consumption.

Results:

Significantly enhanced net fluid balance was achieved following the LightBeer+25 trial (–1.02 ± 0.35 kg) compared with the Beer (–1.59 ± 0.32 kg) and Beer+25 (–1.64 ± 0.28 kg) treatments. Accumulated urine output was significantly lower in the LightBeer+25 trial (1477 ± 485 ml) compared with the Beer+25 (2101 ± 482 ml) and Beer (2175 ± 372 ml) trials.

Conclusion:

A low alcohol beer with added sodium offers a potential compromise between a beverage with high social acceptance and one which avoids the exacerbated fluid losses observed when consuming full strength beer.

Open access

Daniel Martínez-Silván, Jaime Díaz-Ocejo and Andrew Murray

Purpose:

To analyze the influence of training exposure and the utility of self-report questionnaires on predicting overuse injuries in adolescent endurance athletes.

Methods:

Five adolescent male endurance athletes (15.7 ± 1.4 y) from a full-time sports academy answered 2 questionnaires (Recovery Cue; RC-q and Oslo Sports Trauma Research questionnaire; OSTRC-q) on a weekly basis for 1 season (37 wk) to detect signs of overtraining and underrecovery (RC-q) and early symptoms of lower-limb injuries (OSTRC-q). All overuse injuries were retrospectively analyzed to detect which variations in the questionnaires in the weeks preceding injury were best associated. Overuse incidence rates were calculated based on training exposure.

Results:

Lower-limb overuse injuries accounted for 73% of total injuries. The incidence rate for overuse training-related injuries was 10 injuries/1000 h. Strong correlations were observed between individual running exposure and overuse injury incidence (r 2 = .66), number of overuse injuries (r 2 = .69), and days lost (r 2 = .66). A change of 20% or more in the RC-q score in the preceding week was associated with 67% of the lower-limb overuse injuries. Musculoskeletal symptoms were only detected in advance by the OSTRC-q in 27% of the episodes.

Conclusion:

Training exposure (especially running exposure) was shown to be related to overuse injuries, suggesting that monitoring training load is a key factor for injury prevention. Worsening scores in the RC-q (but not the OSTRC) may be an indicator of overuse injury in adolescent endurance runners when used longitudinally.