Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Danielle Lambert x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

D. Randall Smith, Anthony Ciacciarelli, Jennifer Serzan, and Danielle Lambert

That the home team wins more than half its games is well-established. One factor said to produce this home advantage is travel between venues, which is seen as disruptive for the visiting team. Unfortunately, the media and athletes have been more supportive of travel effects than the research literature. While players continue to speculate that travel matters, empirical results find little support for travel factors. In the present paper we demonstrate that, at least for some professional sports, team travel can exert a very small influence on the outcome of the contest even after the quality of the teams competing is controlled. We conclude, however, that the belief that some factors confer an advantage to the home team is more the product of social forces than the influence those factors regularly have on game outcomes.

Restricted access

Nicholas Tam, Ross Tucker, Jordan Santos-Concejero, Danielle Prins, and Robert P. Lamberts

Context: It is debated whether running biomechanics make good predictors of running economy, with little known about the neuromuscular and joint-stiffness contributions to economical running gait. Purpose: To understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Methods: Thirty trained runners performed a 6-min constant-speed running set at 3.3 m·s−1, where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m·s−1 to assess kinematics, kinetics, and muscle activity. Spatiotemporal gait variables, joint stiffness, preactivation, and stance-phase muscle activity (gluteus medius, rectus femoris, biceps femoris, peroneus longus, tibialis anterior, and gastrocnemius lateralis and medius) were variables of specific interest and thus determined. In addition, preactivation and ground contact of agonist–antagonist coactivation were calculated. Results: More economical runners presented with short ground-contact times (r = .639, P < .001) and greater stride frequencies (r = −.630, P < .001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r = .527, P = .007 and r = .384, P = .043, respectively). Only  lateral gastrocnemius–tibialis anterior coactivation during stance was associated with lower oxygen cost of transport (r = .672, P < .0001). Conclusions: Greater muscle preactivation and biarticular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimizing spatiotemporal variables and joint stiffness, will be the most economical runners.