Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Danielle Lambrick x
Clear All Modify Search
Restricted access

Danielle M. Lambrick, Ann V. Rowlands and Roger G. Eston

This study assessed the nature of the perceived exertion response to treadmill running in 14 healthy 7–8 year-old children, using the Eston-Parfitt (E-P) Ratings of Perceived Exertion (RPE) scale and a marble dropping task. For the E-P scale and the marble dropping task, the relationships between the RPE and work rate were best described as linear (R 2 = .96) and curvilinear (R 2 = .94), respectively. This study further suggests that individual respiratory-metabolic cues (oxygen uptake: O2, heart rate: HR, ventilation: V̇E) may significantly influence the overall RPE to varying degrees in young children. The E-P scale provides an intuitively meaningful and valid means of quantifying the overall perception of exertion in young, healthy children during treadmill running. The marble dropping task is a useful secondary measure of perceived exertion, which provides further insight into the nature of the perceived exertion response to exercise in young children.

Restricted access

Danielle Lambrick, Alex Rowlands, Thomas Rowland and Roger Eston

Prior experience of fatiguing tasks is considered essential to establishing an optimal pacing strategy. This study examined the pacing behavior of inexperienced children during self-paced, 800 m running, both individually and within a competitive environment. Thirteen children (aged 9−11 y) completed a graded-exercise test to volitional exhaustion on a treadmill (laboratory trial), followed by three self-paced, individual 800 m time-trials (Trials 1−3) and one self-paced, competitive 800 m time-trial (Trial 4) on an outdoor athletics track. Ratings of perceived exertion (RPE) and heart rate (HR) were measured throughout all trials. Overall performance time improved from Trial 1−3 (250.1 ± 50.4 s & 242.4 ± 51.5 s, respectively, p < .017). The difference in overall performance time between Trials 3 and 4 (260.5 ± 54.2 s) was approaching significance (p = .06). The pacing strategy employed from the outset was consistent across all trials. These findings dispute the notion that an optimal pacing strategy is learned with exercise experience or training.

Restricted access

James Faulkner, Alexis R. Mauger, Brandon Woolley and Danielle Lambrick

Purpose:

To assess the utility of a self-paced maximal oxygen uptake (VO2max) test (SPV) in eliciting an accurate measure of VO2max in comparison with a traditional graded exercise test (GXT) during motorized treadmill exercise.

Design:

This was a cross-sectional experimental study whereby recreationally trained men (n = 13, 25.5 ± 4.6 y) completed 2 maximal exercise tests (SPV, GXT) separated by a 72-h recovery period.

Methods:

The GXT was continuous and incremental, with prescribed 1-km/h increases every 2 min until the attainment of VO2max. The SPV consisted of 5 × 2-min stages of incremental exercise, which were self-selected and adjusted according to 5 prescribed RPE levels (RPE 11, 13, 15, 17, and 20).

Results:

Although no significant differences in VO2max were observed between the SPV and GXT (63.9 ± 3.3 cf 60.9 ± 4.6 mL · kg−1 · min−1, respectively, P > .05), the apparent 4.7% mean difference may be practically important. The 95% limits-of-agreement analysis was 3.03 ± 11.49 mL · kg−1 · min−1. Therefore, in the worst-case scenario, the GXT may underestimate measured VO2max as ascertained by the SPV by up to 19%. Conversely, the SPV could underestimate the GXT by 14%.

Conclusions:

The current study has shown that the SPV is an accurate measure of VO2max during exercise on a motorized treadmill and may provide a slightly higher VO2max value than that obtained from a traditional GXT. The higher VO2max during the SPV may be important when prescribing training or monitoring athlete progression.

Restricted access

James Faulkner, Danielle Lambrick, Sebastian Kaufmann and Lee Stoner

Background:

The purpose of this study was to assess the acute effects of posture (upright vs recumbent) during moderate-intensity cycle exercise on executive function and prefrontal cortex oxygenation in young healthy adults.

Methods:

Seventeen physically active men (24.6 ± 4.3 years) completed 2 30-minute submaximal exercise tests (conditions: upright and recumbent cycle ergometry). Executive function was assessed using the “color” and “word” Stroop task, preexercise (resting) and postexercise. Regional oxygen saturation (rSO2) to the prefrontal cortex was continuously monitored using near-infrared spectroscopy.

Results:

Significant improvements in executive function (Stroop color and word tasks) were observed after 30 minutes of exercise for both upright and recumbent cycling (P < .05). However, there were no differences in executive function between cycling conditions (P > .05). A significant increase in rSO2 was recorded immediately postexercise compared with preexercise for both conditions (P < .05), with a trend (P = .06) for higher peak rSO2 following recumbent cycling compared with upright cycling (81.9% ± 6.5% cf 79.7% ± 9.3%, respectively).

Conclusions:

Although submaximal cycling exercise acutely improves cognitive performance and prefrontal oxygenation, changes in cognition are not perceived to be dependent on body posture in young, healthy men.