Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Darren J. Paul x
  • All content x
Clear All Modify Search
Restricted access

Darren J. Paul, Paul S. Bradley, and George P. Nassis

Time-motion analysis is a valuable data-collection technique used to quantify the match running performance of elite soccer players. However, interpreting the reductions in running performance in the 2nd half or temporarily after the most intense period of games is highly complex, as it could be attributed to physical or mental fatigue, pacing strategies, contextual factors, or a combination of mutually inclusive factors. Given that research in this domain typically uses a reductionist approach whereby match running performance is examined in isolation without integrating other factors, this ultimately leads to a 1-dimensional insight into match performance. Subsequently, a cohesive review of influencing factors does not yet exist. The aim of this commentary is to provide a detailed insight into the complexity of match running performance and its most influential factors.

Restricted access

Darren J. Paul, Gustavo Tomazoli, and George P. Nassis

Purpose: To examine the reproducibility of the Perceived Recovery Status (PRS) scale in football players and describe the time course of the PRS in response to a football match. Methods: Twenty trained youth players (mean [SD] age = 16.2 [1.2] y, height = 1.75 [0.07] m, body mass = 64.0 [7.8] kg) took part in the study. PRS was collected −2 h and −30 min before and +15 min, +3 h, and +24 h after an international football match. Players were categorized into 2 groups based on their playing time (≤45 and 90 min). Results: Reproducibility of the PRS was high (intraclass correlation coefficient = .83, typical error = 0.59, coefficient of variation = 9.9%) between the 2 prematch measures. Overall, PRS was lower at +15 min (4.0 [1.5]; P < .01, effect size = 2.2) and +3 h (4.7 [1.6]; P < .01, effect size = 1.5) compared with −30 min (7.1 [1.3]); +15 min was lower than +24 h (6.1 [1.3]; P < .01, effect size = 1.5). No differences between groups for PRS scores at any of the time points were found. Conclusions: The PRS is a reproducible tool for monitoring perceptions of recovery to football activity and is sensitive to time-course changes relating to a match. The scale is an easy and efficient tool that can be used to monitor an aspect of recovery.

Open access

Pitre C. Bourdon, Marco Cardinale, Andrew Murray, Paul Gastin, Michael Kellmann, Matthew C. Varley, Tim J. Gabbett, Aaron J. Coutts, Darren J. Burgess, Warren Gregson, and N. Timothy Cable

Monitoring the load placed on athletes in both training and competition has become a very hot topic in sport science. Both scientists and coaches routinely monitor training loads using multidisciplinary approaches, and the pursuit of the best methodologies to capture and interpret data has produced an exponential increase in empirical and applied research. Indeed, the field has developed with such speed in recent years that it has given rise to industries aimed at developing new and novel paradigms to allow us to precisely quantify the internal and external loads placed on athletes and to help protect them from injury and ill health. In February 2016, a conference on “Monitoring Athlete Training Loads—The Hows and the Whys” was convened in Doha, Qatar, which brought together experts from around the world to share their applied research and contemporary practices in this rapidly growing field and also to investigate where it may branch to in the future. This consensus statement brings together the key findings and recommendations from this conference in a shared conceptual framework for use by coaches, sport-science and -medicine staff, and other related professionals who have an interest in monitoring athlete training loads and serves to provide an outline on what athlete-load monitoring is and how it is being applied in research and practice, why load monitoring is important and what the underlying rationale and prospective goals of monitoring are, and where athlete-load monitoring is heading in the future.