Search Results

You are looking at 1 - 3 of 3 items for

  • Author: David J. Chalmers x
Clear All Modify Search
Restricted access

Peter L. Davidson, Suzanne J. Wilson, Barry D. Wilson and David J. Chalmers

The energy return characteristics of an impacted surface are important for human impacts such as a child falling onto a play surface or an athlete landing on a gymnastic mat. The amount of energy dissipated or returned to the impacting body will contribute to the surface’s injury-minimizing or performance-enhancing potential. We describe a simple approach for selecting a rheological computer model to simulate a human–surface impact. The situation analyzed was of a head form impact onto gymnastic tumbling mats. The approach can be used to characterize other surfaces and impacts. The force-time-displacement characteristics of the mats were determined from laboratory drop tests. Various spring-damper models were evaluated for their ability to reproduce the experimental acceleration-time and force-displacement impact curves. An exponential spring and depth damper combination was found to best replicate the surface characteristics of the mats tested here, and to demonstrate their energy flow and exchange properties. Rheological modeling is less complex than finite element modeling but still accounted for the depth, velocity, and energy characteristics of the impacted surfaces. This approach will be useful for reproducing the characteristics of surfaces when the impacting body cannot be instrumented, and for predicting force and energy flow in nonrigid impacts.

Restricted access

Peter L. Davidson, Brendan Mahar, David J. Chalmers and Barry D. Wilson

This study was to determine estimates of the stiffness and damping properties of the wrist and shoulder in children by examining wrist impacts on the outstretched hand in selected gymnastic activities. The influence of age, mass, and wrist and torso impact velocity on the stiffness and damping properties were also examined. Fourteen young gymnasts (ages 8 to 15 yrs) were videotaped while performing back-handspring trials or dive-rolls. Kinematic and ground reaction analysis provided input for computer simulation of the body as a rheological model with appropriate stiffness and damping. A significant positive linear relationship was obtained between wrist damping in dive rolls and age, mass, and wrist and torso impact velocity, while shoulder damping in the back-handsprings had a significant positive linear relationship with body mass. This new information on stiffness and damping at the shoulder and the wrist in children enables realistic mathematical modeling of children's physical responses to hand impact in falls. This is significant because modeling studies can now be used as an alternative to epidemiological studies to evaluate measures aimed at reducing injuries in gymnastics and other activities involving impact to the upper extremity.

Restricted access

Peter L. Davidson, Suzanne J. Wilson, David J. Chalmers, Barry D. Wilson, David Eager and Andrew S. McIntosh

The amount of energy dissipated away from or returned to a child falling onto a surface will influence fracture risk but is not considered in current standards for playground impact-attenuating surfaces. A two-mass rheological computer simulation was used to model energy flow within the wrist and surface during hand impact with playground surfaces, and the potential of this approach to provide insights into such impacts and predict injury risk examined. Acceleration data collected on-site from typical playground surfaces and previously obtained data from children performing an exercise involving freefalling with a fully extended arm provided input. The model identified differences in energy flow properties between playground surfaces and two potentially harmful surface characteristics: more energy was absorbed by (work done on) the wrist during both impact and rebound on rubber surfaces than on bark, and rubber surfaces started to rebound (return energy to the wrist) while the upper limb was still moving downward. Energy flow analysis thus provides information on playground surface characteristics and the impact process, and has the potential to identify fracture risks, inform the development of safer impact-attenuating surfaces, and contribute to development of new energy-based arm fracture injury criteria and tests for use in conjunction with current methods.