Search Results

You are looking at 1 - 5 of 5 items for

  • Author: David J. Sanderson x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

David J. Sanderson

The purpose of this experiment was to assess the efficacy of using real-time generated computer feedback of a selected biomechanical variable, force, for modifying the pattern-of-force application of inexperienced cyclists while they cycled at a steady rate (60 rpm) and power output (approximately 112 watts). Positive results would imply that the technique of using biomechanical variables as augmented feedback could be applied in a learning study in such a way to train for the enhancement of performance of cyclists. This approach differs from the traditional one of using novices performing novel tasks. Even though the cyclists were inexperienced, they nonetheless knew how to cycle and thus modifications of the pattern of force application were made to an already existing complex skill.

Restricted access

David J. Sanderson

Restricted access

Virginia L. Fortney and David J. Sanderson

Restricted access

Ewald M. Hennig and David J. Sanderson

Foot function and possible mechanisms for the etiology of frequently observed forefoot complaints in bicycling were studied. Pedal forces and in-shoe pressure distributions were measured with 29 subjects, who rode on a stationary bicycle with a cadence of 80 rpm at 100, 200, 300, and 400 W. The influence of footwear on foot loading was also investigated by comparing running and bicycling shoes at 400 W. The first metatarsal head and the hallux were identified as the major force-contributing structures of the foot. High pressures under the toes, midfoot, and under the heel showed that all foot areas contribute substantially to the generation of pedal forces. For increasing power outputs, higher peak pressures and relative loads under the medial forefoot were identified. These may cause pressure-related forefoot complaints and accompany increased foot pronation. As compared to the running shoe, the stiff bicycling shoe demonstrated a more evenly distributed load across the whole foot and showed a significantly increased index of effectiveness.

Restricted access

Peter R. Cavanagh, Gary C. Andrew, Rodger Kram, Mary M. Rodgers, David J. Sanderson, and Ewald M. Hennig

A comprehensive biomechanical profile for the evaluation of elite distance runners is outlined. The profile includes the following sections: (a) structural assessment, (b) movement analysis, (c) plantar force and pressure, and (d) selected metabolic measurements. For each of these sections the methodology is described, examples of results from two elite distance runners evaluated are presented and, where appropriate, recommendations for performance improvement and/or injury prevention are made. The concluding discussion addresses a number of philosophical issues related to the biomechanical study of elite athletes and makes some' recommendations for farther development of programs of this nature.