Search Results

You are looking at 1 - 3 of 3 items for

  • Author: David M. Morris x
Clear All Modify Search
Restricted access

David M. Morris, Joshua R. Huot, Adam M. Jetton, Scott R. Collier and Alan C. Utter

Dehydration has been shown to hinder performance of sustained exercise in the heat. Consuming fluids before exercise can result in hyperhydration, delay the onset of dehydration during exercise and improve exercise performance. However, humans normally drink only in response to thirst, which does not result in hyperhydration. Thirst and voluntary fluid consumption have been shown to increase following oral ingestion or infusion of sodium into the bloodstream. We measured the effects of acute sodium ingestion on voluntary water consumption and retention during a 2-hr hydration period before exercise. Subjects then performed a 60-min submaximal dehydration ride (DR) followed immediately by a 200 kJ performance time trial (PTT) in a warm (30 °C) environment. Water consumption and retention during the hydration period was greater following sodium ingestion (1380 ± 580 mL consumed, 821 ± 367 ml retained) compared with placebo (815 ± 483 ml consumed, 244 ± 402 mL retained) and no treatment (782 ± 454 ml consumed, 148 ± 289 mL retained). Dehydration levels following the DR were significantly less after sodium ingestion (0.7 ± 0.6%) compared with placebo (1.3 ± 0.7%) and no treatment (1.6 ± 0.4%). Time to complete the PTT was significantly less following sodium consumption (773 ± 158 s) compared with placebo (851 ± 156 s) and no treatment (872 ± 190 s). These results suggest that voluntary hyperhydration can be induced by acute consumption of sodium and has a favorable effect on hydration status and performance during subsequent exercise in the heat.

Restricted access

David M. Morris, Rebecca S. Shafer, Kimberly R. Fairbrother and Mark W. Woodall

The authors sought to determine the effects of oral lactate consumption on blood bicarbonate (HCO3−) levels, pH levels, and performance during high-intensity exercise on a cycle ergometer. Subjects (N = 11) were trained male and female cyclists. Time to exhaustion (TTE) and total work were measured during high-intensity exercise bouts 80 min after the consumption of 120 mg/kg body mass of lactate (L), an equal volume of placebo (PL), or no treatment (NT). Blood HCO3− increased significantly after ingestion of lactate (p < .05) but was not affected in PL or NT (p > .05). No changes in pH were observed as a result of treatment. TTE and total work during the performance test increased significantly by 17% in L compared with PL and NT (p = .02). No significant differences in TTE and total work were seen between the PL and NT protocols (p = .85). The authors conclude that consuming 120 mg/kg body mass of lactate increases HCO3− levels and increases exercise performance during high-intensity cycling ergometry to exhaustion.

Restricted access

David L. Carey, Justin Crow, Kok-Leong Ong, Peter Blanch, Meg E. Morris, Ben J. Dascombe and Kay M. Crossley

Purpose: To investigate whether preseason training plans for Australian football can be computer generated using current training-load guidelines to optimize injury-risk reduction and performance improvement. Methods: A constrained optimization problem was defined for daily total and sprint distance, using the preseason schedule of an elite Australian football team as a template. Maximizing total training volume and maximizing Banister-model-projected performance were both considered optimization objectives. Cumulative workload and acute:chronic workload-ratio constraints were placed on training programs to reflect current guidelines on relative and absolute training loads for injury-risk reduction. Optimization software was then used to generate preseason training plans. Results: The optimization framework was able to generate training plans that satisfied relative and absolute workload constraints. Increasing the off-season chronic training loads enabled the optimization algorithm to prescribe higher amounts of “safe” training and attain higher projected performance levels. Simulations showed that using a Banister-model objective led to plans that included a taper in training load prior to competition to minimize fatigue and maximize projected performance. In contrast, when the objective was to maximize total training volume, more frequent training was prescribed to accumulate as much load as possible. Conclusions: Feasible training plans that maximize projected performance and satisfy injury-risk constraints can be automatically generated by an optimization problem for Australian football. The optimization methods allow for individualized training-plan design and the ability to adapt to changing training objectives and different training-load metrics.