Search Results

You are looking at 1 - 2 of 2 items for

  • Author: David Simbaña Escobar x
Clear All Modify Search
Restricted access

David Simbaña Escobar, Philippe Hellard, David B. Pyne and Ludovic Seifert

To study the variability in stroking parameters between and within laps and individuals during competitions, we compared and modeled the changes of speed, stroke rate, and stroke length in 32 top-level male and female swimmers over 4 laps (L1–L4) in 200-m freestyle events using video-derived 2-dimensional direct linear transformation. For the whole group, speed was greater in L1, with significant decreases across L2, L3, and L4 (1.80 ± 0.10 vs 1.73 ± 0.08; 1.69 ± 0.09; 1.66 ± 0.09  · s−1, P < .05). This variability was attributed to a decrease in stroke length (L2: 2.43 ± 0.19 vs L4: 2.20 ± 0.13 m, P < .05) and an increase in stroke rate (L2: 42.8 ± 2.6 vs L4: 45.4 ± 2.3 stroke · min−1, P < .05). The coefficient of variation and the biological coefficient of variation in speed were greater for male versus female (3.9 ± 0.7 vs 3.1 ± 0.7; 2.9 ± 1.0 vs 2.6 ± 0.7, P < .05) and higher in L1 versus L2 (3.9 ± 1.3 vs 3.1 ± 0.1; 2.9 ± 0.9 vs 2.3 ± 0.7, P < .05). Intra-lap speed values were best represented by a cubic (n = 38), then linear (n = 37) and quadratic model (n = 8). The cubic fit was more frequent for males (43.8%) than females (15.6%), suggesting greater capacity to generate higher acceleration after the turn. The various stroking parameters managements within lap suggest that each swimmer adapts his/her behavior to the race constraints.

Restricted access

Brice Guignard, Bjørn H. Olstad, David Simbaña Escobar, Jessy Lauer, Per-Ludvik Kjendlie and Annie H. Rouard


To investigate electromyographical (EMG) profiles characterizing the lower-limb flexion-extension in an aquatic environment in high-level breaststrokers.


The 2-dimensional breaststroke kick of 1 international- and 2 national-level female swimmers was analyzed during 2 maximal 25-m swims. The activities of biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior were recorded.


The breaststroke kick was divided in 3 phases, according to the movements performed in the sagittal plane: push phase (PP) covering 27% of the total kick duration, glide phase (GP) 41%, and recovery phase (RP) 32%. Intrasubject reproducibility of the EMG and kinematics was observed from 1 stroke cycle to another. In addition, important intersubject kinematic reproducibility was noted, whereas muscle activities discriminated the subjects: The explosive Pp was characterized by important muscle-activation peaks. During the recovery, muscles were likewise solicited for swimmers 1 (S1) and 2 (S2), while the lowest activities were observed during GP for S2 and swimmer 3 (S3), but not for S1, who maintained major muscle solicitations.


The main muscle activities were observed during PP to perform powerful lower-limb extension. The most-skilled swimmer (S1) was the only 1 to solicit her muscles during GP to actively reach better streamlining. Important activation peaks during RP correspond to the limbs acting against water drag. Such differences in EMG strategies among an elite group highlight the importance of considering the muscle parameters used to effectively control the intensity of activation among the phases for a more efficient breaststroke kick.