Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Deborah K. Dulson x
Clear All Modify Search
Restricted access

Joseph A. McQuillan, Julia R. Casadio, Deborah K. Dulson, Paul B. Laursen and Andrew E. Kilding

Purpose: To determine the effect of NO3 consumption on measures of perception, thermoregulation, and cycling performance in hot conditions. Methods: In a randomized, double-blind, crossover design, 8 well-trained cyclists (mean ± SD age 25 ± 8 y, V˙O2 peak 64 ± 5 mL · kg−1 · min−1) performed 2 separate trials in hot (35°C, 60% relative humidity) environments, having ingested either 140 mL NO3-rich beetroot juice ∼8 mmol NO3 (NIT) or placebo (PLA) daily for 3 d with a 7-d washout period separating trials. Trials consisted of 2 × 10-min bouts at 40% and 60% peak power output (PPO) to determine physiological and perceptual responses to the heat, followed by a 4-km cycling time trial. Results: Basal [nitrite] was substantially elevated in NIT (2.70 ± 0.98 µM) vs PLA (1.10 ± 0.61 µM), resulting in a most likely (ES = 1.58 ± 0.93) increase after 3 d. There was a very likely trivial increase in rectal temperature in NIT at 40% (PLA 37.4°C ± 0.2°C vs NIT 37.5°C ± 0.3°C, 0.1°C ± 0.2°C) and 60% (PLA 37.8°C ± 0.2°C vs NIT 37.9°C ± 0.3°C, 0.1°C ± 0.2°C) PPO. Cycling performance was similar between trials (PLA 336 ± 45 W vs NIT 337 ± 50 W, CV ± 95%CL; 0.2% ± 2.5%). Outcomes for heart rate and perceptual measures were unclear across the majority of time points. Conclusions: Three days of NO3 supplementation resulted in small increases in rectal temperature during low- to moderate-intensity exercise, but this did not appear to influence 4-km cycling time-trial performance in hot climates.

Open access

David M. Shaw, Fabrice Merien, Andrea Braakhuis, Daniel Plews, Paul Laursen and Deborah K. Dulson

This study investigated the effect of the racemic β-hydroxybutyrate (βHB) precursor, R,S-1,3-butanediol (BD), on time-trial (TT) performance and tolerability. A repeated-measures, randomized, crossover study was conducted in nine trained male cyclists (age, 26.7 ± 5.2 years; body mass, 69.6 ± 8.4 kg; height, 1.82 ± 0.09 m; body mass index, 21.2 ± 1.5 kg/m2; VO2peak,63.9 ± 2.5 ml·kg−1·min−1; W max, 389.3 ± 50.4 W). Participants ingested 0.35 g/kg of BD or placebo 30 min before and 60 min during 85 min of steady-state exercise, which preceded a ∼25- to 35-min TT (i.e., 7 kJ/kg). The ingestion of BD increased blood D-βHB concentration throughout exercise (0.44–0.79 mmol/L) compared with placebo (0.11–0.16 mmol/L; all p < .001), which peaked 1 hr following the TT (1.38 ± 0.35 vs. 0.34 ± 0.24 mmol/L; p < .001). Serum glucose and blood lactate concentrations were not different between trials (all p > .05). BD ingestion increased oxygen consumption and carbon dioxide production after 20 min of steady-state exercise (p = .002 and p = .032, respectively); however, no further effects on cardiorespiratory parameters were observed. Within the BD trial, moderate to severe gastrointestinal symptoms were reported in five participants, and low levels of dizziness, nausea, and euphoria were reported in two participants. However, this had no effect on TT duration (placebo, 28.5 ± 3.6 min; BD, 28.7 ± 3.2 min; p = .62) and average power output (placebo, 290.1 ± 53.7 W; BD, 286.4 ± 45.9 W; p = .50). These results suggest that BD has no benefit for endurance performance.

Restricted access

Joseph A. McQuillan, Deborah K. Dulson, Paul B. Laursen and Andrew E. Kilding

We aimed to compare the effects of two different dosing durations of dietary nitrate (NO3-) supplementation on 1 and 4 km cycling time-trial performance in highly trained cyclists. In a double-blind crossover-design, nine highly trained cyclists ingested 140ml of NO3--rich beetroot juice containing ~8.0mmol [NO3-], or placebo, for seven days. Participants completed a range of laboratory-based trials to quantify physiological and perceptual responses and cycling performance: time-trials on day 3 and 6 (4km) and on day 4 and 7 (1km) of the supplementation period. Relative to placebo, effects following 3- and 4-days of NO3- supplementation were unclear for 4 (-0.8; 95% CL, ± 2.8%, p = .54) and likely harmful for 1km (-1.9; ± 2.5% CL, p = .17) time-trial mean power. Effects following 6- and 7-days of NO3- supplementation resulted in unclear effects for 4 (0.1; ± 2.2% CL, p = .93) and 1km (-0.9; ± 2.6%CL, p = .51) time-trial mean power. Relative to placebo, effects for 40, 50, and 60% peak power output were unclear for economy at days 3 and 6 of NO3- supplementation (p > .05). Dietary NO3- supplementation appears to be detrimental to 1km time-trial performance in highly trained cyclists after 4-days. While, extending NO3- dosing to ≥ 6-days reduced the magnitude of harm in both distances, overall performance in short duration cycling time-trials did not improve relative to placebo.

Restricted access

Joseph A. McQuillan, Deborah K. Dulson, Paul B. Laursen and Andrew E. Kilding


To determine the effect of dietary nitrate (NO3 ) supplementation on physiology and performance in well-trained cyclists after 6–8 d of NO3 supplementation.


Eight competitive male cyclists (mean ± SD age 26 ± 8 y, body mass 76.7 ± 6.9 kg, VO2peak 63 ± 4 mL · kg–1 · min–1) participated in a double-blind, placebo-controlled, crossover-design study in which participants ingested 70 mL of beetroot juice containing ~4 mmol NO3 (NIT) or a NO3 -depleted placebo (PLA), each for 8 d. Replicating pretreatment measures, participants undertook an incremental ramp assessment to determine VO2peak and first (VT1) and second (VT2) ventilatory thresholds on d 6 (NIT6 and PLA6), moderate-intensity cycling economy on d 7 (NIT7 and PLA7), and a 4-km time trial (TT) on d 8 (NIT8 and PLA8).


Relative to PLA, 6 d of NIT supplementation produced unclear effects for VO2peak (mean ± 95% confidence limit: 1.8% ± 5.5%) and VT1 (3.7% ± 12.3%) and trivial effects for both VT2 (–1.0% ± 3.0%) and exercise economy on d 7 (–1.0% ± 1.6%). However, effects for TT performance time (–0.7% ± 0.9%) and power (2.4% ± 2.5%) on d 8 were likely beneficial.


Despite mostly unclear outcomes for standard physiological determinants of performance, 8 d of NO3 supplementation resulted in likely beneficial improvements to 4-km TT performance in well-trained male endurance cyclists.