Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Denis Massicotte x
Clear All Modify Search
Restricted access

Dennis van Hamont, Christopher R. Harvey, Denis Massicotte, Russell Frew, François Peronnet and Nancy J. Rehrer

Effects of feeding glucose on substrate metabolism during cycling were studied. Trained (60.0 ± 1.9 mL · kg−1 · min−1) males (N = 5) completed two 75 min, 80% VO2max trials: 125 g 13C-glucose (CHO); 13C-glucose tracer, 10 g (C). During warm-up (30 min 30% VO2max) 2 ⋅ 2 g 13C-glucose was given as bicarbonate pool primer. Breath samples and blood glucose were analyzed for 13C/ 12C with IRMS. Protein oxidation was estimated from urine and sweat urea. Indirect calorimetry (protein corrected) and 13C/ 12C enrichment in expired CO2 and blood glucose allowed exogenous (Gexo), endogenous (Gendo), muscle (Gmuscle), and liver glucose oxidation calculations. During exercise (75 min) in CHO versus C (respectively): protein oxidation was lower (6.8 ± 2.7, 18.8 ± 5.9 g; P = 0.01); Gendo was reduced (71.2 ± 3.8, 80.7 ± 5.7%; P = 0.01); Gmuscle was reduced (55.3 ± 6.1, 65.9 ± 6.0%; P = 0.01) compensated by increased Gexo (58.3 ± 2.1, 3.87 ± 0.85 g; P = 0.000002). Glucose ingestion during exercise can spare endogenous protein and carbohydrate, in fed cyclists, without gly-cogen depletion.

Restricted access

Yan Burelle, François Péronnet, Denis Massicotte, Guy R. Brisson and Claude Hillaire-Marcel

The oxidation of 13C-labeled glucose and fructose ingested as a preexercise meal between 180 and 90 min before exercise was measured on 6 subjects when either a placebo or sucrose was ingested during the exercise period. Labeled hexose oxidation, which occurred mainly during the first hour of exercise, was not significantly modified when sucrose was ingested, but exogenous glucose oxidation was significantly higher than exogenous fructose oxidation in both situations. The results suggest that the absorption rate of exogenous hexoses was high when exercise was initiated but diminished thereafter, and that glucose and fructose released from sucrose ingested during exercise did not compete with glucose or fructose ingested before exercise for intestinal absorption, for conversion into glucose in the liver (for fructose), or for uptake and oxidation of glucose in peripheral tissues. However, as already shown, in terms of availability for oxidation of carbohydrates provided by the preexercise meal, glucose should be favored over fructose.