Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Dennis J. Jacobsen x
Clear All Modify Search
Restricted access

Jeffrey A. Potteiger, Erik P. Kirk, Dennis J. Jacobsen and Joseph E. Donnelly


To determine whether 16 months of moderate-intensity exercise training changes resting metabolic rate (RMR) and substrate oxidation in overweight young adults.


Participants were randomly assigned to nonexercise control (CON, 18 women, 15 men) or exercise (EX, 25 women, 16 men) groups. EX performed supervised and verified exercise 3–5 d/wk, 20–45 min/session, at 60–75% of heart-rate reserve. Body mass and composition, maximal oxygen consumption (VO2max), RMR, and resting substrate oxidation were assessed at baseline and after 9 and 16 months of training.


EX men had significant decreases from baseline to 9 months in body mass (94.6 ± 12.4 to 89.2 ± 9.5 kg) and percent fat (28.3 ± 4.6 to 24.5 ± 3.9). CON women had significant increases in body mass (80.2 ± 8.1 to 83.2 ± 9.2 kg) from baseline to 16 months. VO2max increased significantly from baseline to 9 months in the EX men (3.67 ± 0.62 to 4.34 ± 0.58 L/min) and EX women (2.53 ± 0.32 to 3.03 ± 0.42 L/min). RMR increased from baseline to 9 months in EX women (1,583 ± 221 to 1,692 ± 230 kcal/d) and EX men (1,995 ± 184 to 2,025 ± 209 kcal/d). There were no significant differences within genders for either EX or CON in fat or carbohydrate oxidation. Fat oxidation was significantly higher for women than for men at 9 months in both CON and EX groups.


Regular moderate-intensity exercise in healthy, previously sedentary overweight and obese adults increases RMR but does not alter resting substrate oxidation. Women tend to have higher RMR and greater fat oxidation, when expressed per kilogram fat-free mass, than men.

Restricted access

Mark D. Haub, Jeffrey A. Potteiger, Dennis J. Jacobsen, Karen L. Nau, Lawrence A. Magee and Matthew J. Comeau

We investigated the effects of carbohydrate ingestion on glycogen replenishment and subsequent short duration, high intensity exercise performance. During Session 1, aerobic power was determined and each subject (N = 6) was familiarized with the 100-kJ cycling test (lOOKJ-Test). During the treatment sessions, the subjects performed a lOOKJ-Test (Ride-1), then consumed 0.7 g ⋅ kg body mass-1 of maltodextrin (CHO) or placebo (PLC), rested 60 min, and then performed a second lOOKJ-Test (Ride-2). Muscle tissue was collected before (Pre-1) and after Ride-1 (Post-1), and before (Pre-2) and after Ride-2 (Post-2), and analyzed for glycogen concentration. Both treatments yielded a significant increase in glycogen levels following the 60-min recovery, but there was no difference between treatments. Time to complete the lOOKJ-Test increased significantly for PLC, but not for CHO. These data indicate that the decrease in performance during Ride-2 in PLC was not the result of a difference in glycogen concentration.