Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Dieter Böning x
Clear All Modify Search
Restricted access

Dieter Böning

In modern societies there is strong belief in scientific progress, but, unfortunately, a parallel partial regress occurs because of often avoidable mistakes. Mistakes are mainly forgetting, erroneous theories, errors in experiments and manuscripts, prejudice, selected publication of “positive” results, and fraud. An example of forgetting is that methods introduced decades ago are used without knowing the underlying theories: Basic articles are no longer read or cited. This omission may cause incorrect interpretation of results. For instance, false use of actual base excess instead of standard base excess for calculation of the number of hydrogen ions leaving the muscles raised the idea that an unknown fixed acid is produced in addition to lactic acid during exercise. An erroneous theory led to the conclusion that lactate is not the anion of a strong acid but a buffer. Mistakes occur after incorrect application of a method, after exclusion of unwelcome values, during evaluation of measurements by false calculations, or during preparation of manuscripts. Co-authors, as well as reviewers, do not always carefully read papers before publication. Peer reviewers might be biased against a hypothesis or an author. A general problem is selected publication of positive results. An example of fraud in sports medicine is the presence of doped subjects in groups of investigated athletes. To reduce regress, it is important that investigators search both original and recent articles on a topic and conscientiously examine the data. All co-authors and reviewers should read the text thoroughly and inspect all tables and figures in a manuscript.

Restricted access

Renate M. Leithäuser, Dieter Böning, Matthias Hütler and Ralph Beneke

Relatively long-lasting metabolic alkalizing procedures such as bicarbonate ingestion have potential for improving performance in long-sprint to middle-distance events. Within a few minutes, hyperventilation can induce respiratory alkalosis. However, corresponding performance effects are missing or equivocal at best.


To test a potential performance-enhancing effect of respiratory alkalosis in a 30-s Wingate Anaerobic Test (WAnT).


10 men (mean ± SD age 26.6 ± 4.9 y, height 184.4 ± 6.1 cm, body-mass test 1 80.7 ± 7.7 kg, body-mass test 2 80.4 ± 7.2 kg, peak oxygen uptake 3.95 ± 0.43 L/min) performed 2 WAnTs, 1 with and 1 without a standardized 15-min hyperventilation program pre-WAnT in randomized order separated by 1 wk.


Compared with the control condition, hyperventilation reduced (all P < .01) pCO2 (40.5 ± 2.8 vs 22.5 ± 1.6 mm Hg) and HCO3 (25.5 ± 1.7 vs 22.7 ± 1.6 mmol/L) and increased (all P < .01) pH (7.41 ± 0.01 vs 7.61 ± 0.03) and actual base excess (1.4 ± 1.4 vs 3.2 ± 1.6 mmol/L) pre-WAnT with an ergogenic effect on WAnT average power (681 ± 41 vs 714 ± 44 W) and total metabolic energy (138 ± 12 vs. 144 ± 13 kJ) based on an increase in glycolytic energy (81 ± 13 vs 88 ± 13 kJ).


Hyperventilation-induced respiratory alkalosis can enhance WAnT cycling sprint performance well in the magnitude of what is seen after successful bicarbonate ingestion.