Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Douglas S. King x
Clear All Modify Search
Restricted access

Matthew D. Vukovich, Rick L. Sharp, Douglas S. King and Kellie Kershishnik

Eleven subjects performed a graded exercise test after 1 week of protein supplementation (PRO) or glucose polymer placebo (CON), randomly assigned in a double blind fashion. The exercise consisted of 3-min graded exercise bouts separated by 10 min of active recovery at zero pedal resistance. Subjects then performed a 30-sec Wingate test (WIN) to assess performance during supramaximal exercise. Blood samples were obtained in the last 15 sec of each exercise and recovery period. PRO resulted in a decrease in blood lactate following 120% VO2max and WIN, an increase in blood alanine at all time points, and lower postexercise muscle lactate and glycogen. Resting muscle GPT activity was 47% higher during the PRO trial. Mean power output during the WIN did not differ between PRO and CON. The WIN fatigue index was not significantly different between PRO and CON. The increased alanine may reflect increased transamination of pyruvate, thereby reducing the accumulation of lactate, which in turn had a marginal effect on performance during supramaximal exercise.

Restricted access

Rachel B. Parks, Hector F. Angus, Douglas S. King and Rick L. Sharp

Amylomaize-7 is classified as a resistant corn starch and is 68% digestible. When modified by partial hydrolysis in ethanol and hydrochloric acid its digestibility is 92%, yet retains its low glycemic and insulinemic properties. The purpose of this study was to characterize the metabolic response when modified amylomaize-7 or dextrose is consumed in the hour before exercise, and to compare the effect on performance of a brief high-intensity cycling trial. Ten male, trained cyclists were given 1 g/kg body mass of dextrose (DEX) or modified amylomaize-7 (AMY-7) or a flavored water placebo (PL) 45 min prior to exercise on a cycle ergometer. A 15-min ride at 60% Wmax was immediately followed by a self-paced time trial (TT) equivalent to 15 min at 80% Wmax. When cyclists consumed DEX, mean serum glucose concentration increased by 3.3 ± 2.1 mmol/L before exercise, compared to stable serum glucose observed for AMY-7 or PL. Glucose concentrations returned to baseline by pre-TT in all treatments. However, the mean post-TT glucose concentration of the DEX group was significantly lower than baseline, AMY-7, or PL. Serum insulin concentration increased nine-fold from baseline to preexercise in the DEX trial, whereas PL or AMY-7 remained unchanged. Time required to complete the performance trial was not significantly different between DEX, AMY-7 or PL. Preexercise ingestion of modified amylomaize-7 compared to dextrose resulted in a more stable serum glucose concentration, but did not offer a performance advantage in this high-intensity cycling trial.

Restricted access

Neil M. Johannsen, Zebblin M. Sullivan, Nicole R. Warnke, Ann L. Smiley-Oyen, Douglas S. King and Rick L. Sharp

Purpose:

To determine whether chicken noodle soup before exercise increases ad libitum water intake, fluid balance, and physical and cognitive performance compared with water.

Methods:

Nine trained men (age 25 ± 3 yr, VO2peak 54.2 ± 5.1 ml · kg−1 · min−1; M ± SD) performed cycle exercise in the heat (wet bulb globe temperature = 25.9 ± 0.4 °C) for 90 min at 50% VO2peak, 45 min after ingesting 355 ml of either commercially available bottled water (WATER) or chicken noodle soup (SOUP). The same bottled water was allowed ad libitum throughout both trials. Participants then completed a time trial to finish a given amount of work (10 min at 90% VO2peak; n = 8). Cognitive performance was evaluated by the Stroop color–word task before, every 30 min during, and immediately after the time trial.

Results:

Ad libitum water intake throughout steady-state exercise was greater in SOUP than with WATER (1,435 ± 593 vs. 1,163 ± 427 g, respectively; p < .03). Total urine volume was similar in both trials (p = .13), resulting in a trend for greater water retention in SOUP than in WATER (87.7% ± 7.6% vs. 74.9% ± 21.7%, respectively; p = .09), possibly due to a change in free water clearance (–0.32 ± 1.22 vs. 0.51 ± 1.06 ml/min, respectively; p = .07). Fluid balance tended to be improved with SOUP (–106 ± 603 vs. –478 ± 594 g, p = .05). Likewise, change in plasma volume tended to be reduced in SOUP compared with WATER (p = .06). Only mild dehydration was achieved (<1%), and physical performance was not different between treatments (p = .77). The number of errors in the Stroop color–word task was lower in SOUP throughout the entire trial (treatment effect; p = .04).

Conclusion:

SOUP before exercise increased ad libitum water intake and may alter kidney function.

Restricted access

Renee M. Jeffreys, Thomas H. Inge, Todd M. Jenkins, Wendy C. King, Vedran Oruc, Andrew D. Douglas and Molly S. Bray

Background:

The accuracy of physical activity (PA) monitors to discriminate between PA, sedentary behavior, and nonwear in extremely obese (EO) adolescents is unknown.

Methods:

Twenty-five subjects (9 male/16 female; age = 16.5 ± 2.0 y; BMI = 51 ± 8 kg/m2) wore 3 activity monitors (StepWatch [SAM], Actical [AC], Actiheart [AH]) during a 400-m walk test (400MWT), 2 standardized PA bouts of varying duration, and 1 sedentary bout.

Results:

For the 400MWT, percent error between observed and monitor-recorded steps was 5.5 ± 7.1% and 82.1 ± 38.6% for the SAM and AC steps, respectively (observed vs. SAM steps: −17.2 ± 22.2 steps; observed vs. AC steps: −264.5 ± 124.8 steps). All activity monitors were able to differentiate between PA and sedentary bouts, but only SAM steps and AH heart rate were significantly different between sedentary behavior and nonwear (P < .001). For all monitors, sedentary behavior was characterized by bouts of zero steps/counts punctuated by intermittent activity steps/counts; nonwear was represented almost exclusively by zero steps/counts.

Conclusion:

Of all monitors tested, the SAM was most accurate in terms of counting steps and differentiating levels of PA and thus, most appropriate for EO adolescents. The ability to accurately characterize PA intensity in EO adolescents critically depends on activity monitor selection.

Restricted access

Allen C. Parcell, Melinda L. Ray, Kristine A. Moss, Timothy M. Ruden, Rick L. Sharp and Douglas S. King

Previous investigations have reported that soluble fiber reduces the plasma glucose and insulin changes after an oral glucose load. To improve the payability of a soluble-fiber feeding, this study addressed how a combined, soluble fiber (delivered in capsule form) and a preexercise CHO feeding would affect metabolic responses during exercise. On 3 different days, participants ingested a placebo (CON), 75 g liquid CHO (GLU), or 75 g liquid CHO with 14.5 g encapsulated guar gum (FIB) 45 min before cycling for 60 min at 70% VO2peak. Peak concentrations of plasma glucose and insulin were similar and significantly greater than CON preexercise (p < .05). Similarities in carbohydrate reliance were observed in GLU and FIB. Muscle glycogen use did not differ significantly among trials. These results demonstrate that encapsulated soluble fiber delivered with a liquid CHO feeding does not affect plasma glucose, insulin, or muscle glycogen utilization during exercise.

Restricted access

Gregory A. Brown, Matthew D. Vukovich, Tracy A. Reifenrath, Nathaniel L. Uhl, Kerry A. Parsons, Rick L. Sharp and Douglas S. King

The effects of androgen precursors, combined with herbal extracts designed to enhance testosterone formation and reduce conversion of androgens to estrogens was studied in young men. Subjects performed 3 days of resistance training per week for 8 weeks. Each day during Weeks 1,2,4,5,7, and 8, subjects consumed either placebo (PL; n = 10) or a supplement (ANDRO-6; n = 10), which contained daily doses of 300 mg androstenedione, 150 mg DHEA, 750 mg Tribulus terrestris, 625 mg Chrysin, 300 mg Indole-3-carbinol, and 540 mg Saw palmetto. Serum androstenedione concentrations were higher in ANDRO-6 after 2,5, and 8 weeks (p < .05), while serum concentrations of free and total testosterone were unchanged in both groups. Serum estradiol was elevated at Weeks 2, 5, and 8 in ANDRO-6 (p < .05), and serum estrone was elevated at Weeks 5 and 8 (p < .05). Muscle strength increased (p < .05) similarly from Weeks 0 to 4, and again from Weeks 4 to 8 in both treatment groups. The acute effect of one third of the daily dose, of ANDRO-6 and PL was studied in 10 men (23±4years). Serum androstenedione concentrations were elevated (p < .05) in ANDRO-6 from 150 to 360 min after ingestion, while serum free or total testosterone concentrations were unchanged. These data provide evidence that the addition of these herbal extracts to androstenedione does not result in increased serum testosterone concentrations, reduce the estrogenic effect of androstenedione, and does not augment the adaptations to resistance training.