Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Eileen Y. Robertson x
Clear All Modify Search
Restricted access

Clint R. Bellenger, Laura Karavirta, Rebecca L. Thomson, Eileen Y. Robertson, Kade Davison and Jonathan D. Buckley

Purpose:

Heart-rate variability (HRV) as a measure of autonomic function may increase in response to training interventions leading to increases or decreases in performance, making HRV interpretation difficult in isolation. This study aimed to contextualize changes in HRV with subjective measures of training tolerance.

Methods:

Supine and standing measures of vagally mediated HRV (root-mean-square difference of successive normal RR intervals [RMSSD]) and measures of training tolerance (Daily Analysis of Life Demands for Athletes questionnaire, perception of energy levels, fatigue, and muscle soreness) were recorded daily during 1 wk of light training (LT), 2 wk of heavy training (HT), and 10 d of tapering (T) in 15 male runners/triathletes. HRV and training tolerance were analyzed as rolling 7-d averages at LT, HT, and T. Performance was assessed after LT, HT, and T with a 5-km treadmill time trial (5TTT).

Results:

Time to complete the 5TTT likely increased after HT (effect size [ES] ± 90% confidence interval = 0.16 ± 0.06) and then almost certainly decreased after T (ES = −0.34 ± 0.08). Training tolerance worsened after HT (ES ≥ 1.30 ± 0.41) and improved after T (ES ≥ 1.27 ± 0.49). Standing RMSSD very likely increased after HT (ES = 0.62 ± 0.26) and likely remained higher than LT at the completion of T (ES = 0.38 ± 0.21). Changes in supine RMSSD were possible or likely trivial.

Conclusion:

Vagally mediated HRV during standing increased in response to functional overreaching (indicating potential parasympathetic hyperactivity) and also to improvements in performance. Thus, additional measures such as training tolerance are required to interpret changes in vagally mediated HRV.

Open access

Avish P. Sharma, Philo U. Saunders, Laura A. Garvican-Lewis, Brad Clark, Jamie Stanley, Eileen Y. Robertson and Kevin G. Thompson

Purpose:

To determine the effect of training at 2100-m natural altitude on running speed (RS) during training sessions over a range of intensities relevant to middle-distance running performance.

Methods:

In an observational study, 19 elite middle-distance runners (mean ± SD age 25 ± 5 y, VO2max, 71 ± 5 mL · kg–1 · min–1) completed either 4–6 wk of sea-level training (CON, n = 7) or a 4- to 5-wk natural altitude-training camp living at 2100 m and training at 1400–2700 m (ALT, n = 12) after a period of sea-level training. Each training session was recorded on a GPS watch, and athletes also provided a score for session rating of perceived exertion (sRPE). Training sessions were grouped according to duration and intensity. RS (km/h) and sRPE from matched training sessions completed at sea level and 2100 m were compared within ALT, with sessions completed at sea level in CON describing normal variation.

Results:

In ALT, RS was reduced at altitude compared with sea level, with the greatest decrements observed during threshold- and VO2max-intensity sessions (5.8% and 3.6%, respectively). Velocity of low-intensity and race-pace sessions completed at a lower altitude (1400 m) and/or with additional recovery was maintained in ALT, though at a significantly greater sRPE (P = .04 and .05, respectively). There was no change in velocity or sRPE at any intensity in CON.

Conclusion:

RS in elite middle-distance athletes is adversely affected at 2100-m natural altitude, with levels of impairment dependent on the intensity of training. Maintenance of RS at certain intensities while training at altitude can result in a higher perceived exertion.

Restricted access

Philo U. Saunders, Christoph Ahlgrim, Brent Vallance, Daniel J. Green, Eileen Y. Robertson, Sally A. Clark, Yorck O. Schumacher and Christopher J. Gore

Purpose:

To quantify physiological and performance effects of hypoxic exposure, a training camp, the placebo effect, and a combination of these factors.

Methods:

Elite Australian and International race walkers (n = 17) were recruited, including men and women. Three groups were assigned: 1) Live High:Train Low (LHTL, n = 6) of 14 h/d at 3000 m simulated altitude; 2) Placebo (n = 6) of 14 h/d of normoxic exposure (600 m); and 3) Nocebo (n = 5) living in normoxia. All groups undertook similar training during the intervention. Physiological and performance measures included 10-min maximal treadmill distance, peak oxygen uptake (VO2peak), walking economy, and hemoglobin mass (Hbmass).

Results:

Blinding failed, so the Placebo group was a second control group aware of the treatment. All three groups improved treadmill performance by approx. 4%. Compared with Placebo, LHTL increased Hbmass by 8.6% (90% CI: 3.5 to 14.0%; P = .01, very likely), VO2peak by 2.7% (-2.2 to 7.9%; P = .34, possibly), but had no additional improvement in treadmill distance (-0.8%, -4.6 to 3.8%; P = .75, unlikely) or economy (-8.2%, -24.1 to 5.7%; P = .31, unlikely). Compared with Nocebo, LHTL increased Hbmass by 5.5% (2.5 to 8.7%; P = .01, very likely), VO2peak by 5.8% (2.3 to 9.4%; P = .02, very likely), but had no additional improvement in treadmill distance (0.3%, -1.9 to 2.5%; P = .75, possibly) and had a decrease in walking economy (-16.5%, -30.5 to 3.9%; P = .04, very likely).

Conclusion:

Overall, 3-wk LHTL simulated altitude training for 14 h/d increased Hbmass and VO2peak, but the improvement in treadmill performance was not greater than the training camp effect.

Restricted access

Joel T. Fuller, Clint R. Bellenger, Dominic Thewlis, John Arnold, Rebecca L. Thomson, Margarita D. Tsiros, Eileen Y. Robertson and Jonathan D. Buckley

Purpose:

Stride-to-stride fluctuations in running-stride interval display long-range correlations that break down in the presence of fatigue accumulated during an exhaustive run. The purpose of the study was to investigate whether long-range correlations in running-stride interval were reduced by fatigue accumulated during prolonged exposure to a high training load (functional overreaching) and were associated with decrements in performance caused by functional overreaching.

Methods:

Ten trained male runners completed 7 d of light training (LT7), 14 d of heavy training (HT14) designed to induce a state of functional overreaching, and 10 d of light training (LT10) in a fixed order. Running-stride intervals and 5-km time-trial (5TT) performance were assessed after each training phase. The strength of long-range correlations in running-stride interval was assessed at 3 speeds (8, 10.5, and 13 km/h) using detrended fluctuation analysis.

Results:

Relative to performance post-LT7, time to complete the 5TT was increased after HT14 (+18 s; P < .05) and decreased after LT10 (–20 s; P = .03), but stride-interval long-range correlations remained unchanged at HT14 and LT10 (P > .50). Changes in stride-interval long-range correlations measured at a 10.5-km/h running speed were negatively associated with changes in 5TT performance (r –.46; P = .03).

Conclusions:

Runners who were most affected by the prolonged exposure to high training load (as evidenced by greater reductions in 5TT performance) experienced the greatest reductions in stride-interval long-range correlations. Measurement of stride-interval long-range correlations may be useful for monitoring the effect of high training loads on athlete performance.