Search Results

You are looking at 1 - 9 of 9 items for

  • Author: Eric D.B. Goulet x
  • All content x
Clear All Modify Search
Restricted access

Eric D.B. Goulet

Glycerol-induced hyperhydration (GIH) has been shown to improve fluid retention and endurance performance compared with water-induced hyperhydration. The goal of this article is to report on what is known and unknown about how glycerol-containing hyperhydration solutions (GCHSs) are processed at the stomach and intestine level, propose strategies to improve the efficacy of GIH, and provide research questions for future studies. Through statistical analyses, it is demonstrated that the effectiveness of GCHSs in increasing fluid retention is maximized when fluid ingestion is in the upper range of what is normally administered by studies (~26 ml/kg body weight) and the duration of the protocol is no longer than the time it takes for the glycerol-fluid load to be totally or nearly completely integrated inside the body. The rate of gastric emptying and intestinal absorption of GCHSs is unknown. However, based on an analysis of indirect evidence obtained from human studies, it is proposed that most glycerol (~80 g) and fluid (~1,700 ml) ingested during a typical GIH protocol can be integrated inside the body within 60–90 min. Whether the stress associated with competition could alter these figures is unknown. Research in rats indicates that combining glycerol with glucose at a 3:1 ratio accelerates intestinal absorption of both glycerol and water, thereby potentially improving the efficacy of GIH. Human studies must be conducted to determine how GCHSs are processed by the gastrointestinal system and whether adding glucose to GCHSs could improve the technique’s efficacy.

Restricted access

Eric D.B. Goulet and Lindsay B. Baker

The B-722 Laqua Twin is a low cost, portable, and battery operated sodium analyzer, which can be used for the assessment of sweat sodium concentration. The Laqua Twin is reliable and provides a degree of accuracy similar to more expensive analyzers; however, its interunit measurement error remains unknown. The purpose of this study was to compare the sodium concentration values of 70 sweat samples measured using three different Laqua Twin units. Mean absolute errors, random errors and constant errors among the different Laqua Twins ranged respectively between 1.7 mmol/L to 3.5 mmol/L, 2.5 mmol/L to 3.7 mmol/L and –0.6 mmol/L to 3.9 mmol/L. Proportional errors among Laqua Twins were all < 2%. Based on a within-subject biological variability in sweat sodium concentration of ± 12%, the maximal allowable imprecision among instruments was considered to be £ 6%. In that respect, the within (2.9%), between (4.5%), and total (5.4%) measurement error coefficient of variations were all < 6%. For a given sweat sodium concentration value, the largest observed difference in mean and lower and upper bound error of measurements among instruments were, respectively, 4.7 mmol/L, 2.3 mmol/L, and 7.0 mmol/L. In conclusion, our findings show that the interunit measurement error of the B-722 Laqua Twin is low and methodologically acceptable.

Restricted access

Eric D.B. Goulet and Isabelle J. Dionne

The use of nutritional ergogenic aids containing Eleutherococcus senticosus (ES), a plant which is also known as ciwujia or Siberian ginseng, is relatively common among endurance athletes. Eleutherococcus senticosus has been suggested to improve cardiorespiratory fitness (CF) and fat metabolism (FAM) and, therefore, endurance performance (EP). This article reviews the studies that evaluated the effects of ES during endurance exercise, three of which suggest that ES substantially improves CF, FAM, and EP. However, each of these reports contains severe methodological flaws, which seriously threaten their internal validity, thereby rendering hazardous the generalization of the results. On the other hand, 5 studies that used rigorous research protocols show no benefit of ES on CF, FAM, and EP. It is therefore concluded that ES supplementation (up to 1000 to 1200 mg/d for 1 to 6 wk) offers no advantage during exercise ranging in duration from 6 to 120 min.

Restricted access

Martin Lamontagne-Lacasse, Raymond Nadon, and Eric D.B. Goulet

Jump height is a critical aspect of volleyball players’ blocking and attacking performance. Although previous studies demonstrated that creatine monohydrate supplementation (CrMS) improves jumping performance, none have yet evaluated its effect among volleyball players with proficient jumping skills. We examined the effect of 4 wk of CrMS on 1 RM spike jump (SJ) and repeated block jump (BJ) performance among 12 elite males of the Sherbrooke University volleyball team. Using a parallel, randomized, double-blind protocol, participants were supplemented with a placebo or creatine solution for 28 d, at a dose of 20 g/d in days 1–4, 10 g/d on days 5-6, and 5 g/d on days 7-28. Pre- and postsupplementation, subjects performed the 1 RM SJ test, followed by the repeated BJ test (10 series of 10 BJs; 3 s interval between jumps; 2 min recovery between series). Due to injuries (N = 2) and outlier data (N = 2), results are reported for eight subjects. Following supplementation, both groups improved SJ and repeated BJ performance. The change in performance during the 1 RM SJ test and over the first two repeated BJ series was unclear between groups. For series 3-6 and 7-10, respectively, CrMS further improved repeated BJ performance by 2.8% (likely beneficial change) and 1.9% (possibly beneficial change), compared with the placebo. Percent repeated BJ decline in performance across the 10 series did not differ between groups pre- and postsupplementation. In conclusion, CrMS likely improved repeated BJ height capability without influencing the magnitude of muscular fatigue in these elite, university-level volleyball players.

Restricted access

Denis M. Pelletier, Guillaume Lacerte, and Eric D.B. Goulet

Lately, the effect of quercetin supplementation (QS) on endurance performance (EP) and maximal oxygen consumption (VO2max) has been receiving much scientific and media attention. Therefore, a meta-analysis was performed to determine QS’s ergogenic value on these variables. Studies were located with database searches (PubMed and SPORTDiscus) and cross-referencing. Outcomes represent mean percentage changes in EP (measured via power output) and VO2max between QS and placebo. Random-effects model meta-regression, mixed-effects model analog to the ANOVA, random-effects weighted mean effect summary, and magnitudebased inferences analyses were used to delineate the effects of QS. Seven research articles (representing 288 subjects) were included, producing 4 VO2max and 10 EP effect estimates. Mean QS daily intake and duration were, respectively, 960 ± 127 mg and 26 ± 24 d for the EP outcome and 1,000 ± 0 mg and 8 ± 23 d for the VO2max outcome. EP was assessed during exercise with a mean duration of 79 ± 82 min. Overall, QS improved EP by 0.74% (95% CI: 0.10–1.39, p = .02) compared with placebo. However, only in untrained individuals (0.83% ± 0.78%, p = .02) did QS significantly improve EP (trained individuals: 0.09% ± 2.15%, p = .92). There was no relationship between QS duration and EP (p = .69). Overall, QS increased VO2max by 1.94% (95% CI: 0.30–3.59, p = .02). Magnitude-based inferences suggest that the effect of QS on EP and VO2max is likely to be trivial for both trained and untrained individuals. In conclusion, this meta-analysis indicates that QS is unlikely to prove ergogenic for aerobic-oriented exercises in trained and untrained individuals.

Restricted access

Mylène Aubertin-Leheudre, Eric D.B. Goulet, and Isabelle J. Dionne

Hormone-replacement therapy (HRT) attenuates the menopause-associated alterations in body composition. It is not known, however, whether this effect is a result of a concomitant increase in energy expenditure. The authors examined whether women submitted to a long-term HRT treatment presented greater energy expenditure than women who had never used HRT. We compared 13 postmenopausal women using HRT (>1 yr) with 13 age- (±2 yr) and body-mass-index-matched (BMI; ±1.5kg/m2) postmenopausal women not using HRT. Resting energy expenditure (REE; indirect calorimetry), body composition, and daily (DEE) and physical activity (PAEE) energy expenditure (accelerometry) were obtained. Although BMI, fat mass, fat-free mass, DEE, and PAEE were similar between groups, the HRT group displayed a significantly greater REE than the no-HRT group (Δ +222 kcal/day). In conclusion, the authors observed that a long-term treatment with HRT is associated with a greater REE in postmenopausal women. These results need to be confirmed.

Restricted access

Eric D.B. Goulet, Mylène Aubertin-Leheudre, Gérard E. Plante, and Isabelle J. Dionne

The authors determined, through a meta-analytic approach, whether glycerol-induced hyperhydration (GIH) enhances fluid retention and increases endurance performance (EP) significantly more than water-induced hyperhydration (WIH). Collectively, studies administered 23.9 ± 2.7 mL of fuid/kg body weight (BW) with 1.1 ± 0.2 g glycerol/kg BW, and hyperhydration was measured 136 ± 15 min after its onset. Compared with WIH, GIH increased fluid retention by 7.7 ± 2.8 mL/kg BW (P < 0.01; pooled effect size [PES]: 1.64 ± 0.80, P < 0.01, N = 14). The use of GIH was associated with an improvement in EP of 2.62% ± 1.60% (P = 0.047; PES: 0.35 ± 0.13, P = 0.014, N = 4). Unarguably, GIH significantly enhances fluid retention better than WIH. Because of the dearth of data, the effect of GIH on EP must be further investigated before more definitive conclusions can be drawn as to its ergogenic property.

Restricted access

Eric D.B. Goulet, Adrien De La Flore, Félix A. Savoie, and Jonathan Gosselin

Hyperhydration has been demonstrated to improve work capacity and cardiovascular and thermoregulatory functions, enhance orthostatic tolerance, slow or neutralize bone demineralization, and decrease postdive bubble formation. Adding sodium or glycerol to a hyperhydration solution optimizes fluid retention. Sodium and glycerol produce their effect through different physiological mechanisms. If combined into a hyperhydration solution, their impact on fluid retention could potentially be greater than their singular effect. We compared the effect of salt-induced hyperhydration (SIH), glycerol-induced hyperhydration (GIH), and salt + glycerol-induced hyperhydration (SGIH) on fluid balance responses during a 3-hr passive experiment. Using a randomized, crossover, and counterbalanced experiment, 15 young men (22 ± 4 years) underwent three, 3-hr hyperhydration experiments during which they ingested 30 ml/kg fat-free mass (FFM) of water with an artificial sweetener plus either (a) 7.5 g of table salt/L (SIH), (b) 1.4 g glycerol/kg FFM (GIH), or (c) 7.5 g of table salt/L + 1.4 g glycerol/kg FFM (SGIH). After 3 hr, there were no significant differences in plasma volume changes among experiments (SIH: 11.3% ± 9.9%; GIH: 7.6% ± 12.7%; SGIH: 11.3% ± 13.7%). Total urine production was significantly lower (SIH: 775 ± 329 ml; GIH: 1,248 ± 270 ml; SGIH: 551 ± 208 ml) and fluid retention higher (SIH: 1,127 ± 212 ml; GIH: 729 ± 115 ml; SGIH: 1,435 ± 140 ml) with SGIH than either GIH or SIH. Abdominal discomfort was low and not significantly different among experiments. In conclusion, results show that SGIH reduces urine production and provides more fluid retention than either SIH or GIH.

Restricted access

Eric D.B. Goulet, Michel O. Mélançon, Mylène Aubertin Leheudre, and Isabelle J. Dionne

It is unclear whether long-term aerobic (AT) or resistance (RT) training can improve insulin sensitivity (IS) beyond the residual effect of the last training bout in older women (54–78 years). Therefore, a group of nonobese, healthy older women underwent 6 months of AT (n = 8) or RT (n = 10), and the authors measured IS 4 days after the last training bouts using the hyperinsulinemic-euglycemic clamp technique. Women trained 3 days/week. AT consisted of 25- to 60-min sessions of walking/jogging at 60–95% of maximal heart rate. RT consisted of three sets of nine exercises repeated 10 times at 80% of 1 repetition maximum. AT decreased fat mass, whereas both AT and RT increased fat-free mass. Neither training program, however, improved absolute or relative rates of glucose disposal. The authors therefore concluded that nonobese, healthy older women should perform AT or RT on a daily basis in order to improve IS and maintain the improvement.