Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Eric Foch x
Clear All Modify Search
Restricted access

Eric Foch and Clare E. Milner

It is unknown if female runners who have sustained multiple iliotibial band syndrome occurrences run differently compared with runners who developed the injury once or controls. Therefore, the purpose of this study was to determine if differences existed in coordination patterns and coordination variability among female runners with recurrent iliotibial band syndrome, 1 iliotibial band syndrome occurrence, and controls. Overground running trials were collected for 36 female runners (n = 18 controls). Lower extremity coordination patterns were examined during running via a vector coding analysis. Coordination variability was calculated via the ellipse area method. Separate 1-way (group) Kruskal–Wallis tests were performed to compare each coordination pattern and coordination variability. Lower extremity coordination between frontal plane hip–transverse plane hip, frontal plane pelvis–frontal plane thigh, and frontal plane thigh–transverse plane shank was similar among groups and so may not be related to the risk of iliotibial band syndrome. Runners with 1 iliotibial band syndrome occurrence demonstrated greater coordination variability for 2 of 3 couplings compared with both controls and runners with recurrent iliotibial band syndrome. Thus, the number of previous injury episodes may influence coordination variability in female runners with a history of iliotibial band syndrome.

Restricted access

Eric Foch and Clare E. Milner

Proximal factors such as excessive frontal plane pelvis and trunk motion have been postulated to be biomechanical risk factors associated with iliotibial band syndrome. In addition, lateral core endurance deficiencies may be related to increased pelvis and trunk motion during running. The purpose of this cross-sectional investigation was to determine if differences in biomechanics during running, as well as lateral core endurance exist between female runners with previous iliotibial band syndrome and controls. Gait and lateral core endurance were assessed in 34 female runners (17 with previous iliotibial band syndrome). Multivariate analysis of variance was performed to assess between group difference in pelvis, trunk, hip, and knee variables of interest. Runners with previous iliotibial band syndrome exhibited similar peak trunk lateral flexion, peak contralateral pelvic drop, peak hip adduction, and peak external knee adduction moment compared with controls. In addition, trunk-pelvis coordination was similar between groups. Contrary to our hypotheses, both groups exhibited trunk ipsilateral flexion. Lateral core endurance was not different between groups. These findings provide the first frontal plane pelvis and trunk kinematic data set in female runners with previous iliotibial band syndrome. Frontal plane pelvis and trunk motion may not be associated with iliotibial band syndrome.