Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Erik Andersson x
Clear All Modify Search
Restricted access

Jonathan Watkins, Simon Platt, Erik Andersson and Kerry McGawley

Purpose:

The aim of the current study was to investigate pacing strategies and the distribution of physiological resources in best vs worst performances during a series of 4-min self-paced running time trials (RunTTs).

Methods:

Five male and 5 female recreational runners (age 32 ± 7 y) completed a submaximal ramp test and 5 RunTTs on a motor-driven treadmill fitted with a speed-controlling laser system. The supramaximal oxygen-uptake (V̇O2) demand was estimated by linear extrapolation from the submaximal relationship between V̇O2 and speed, enabling computation of the accumulated oxygen deficit.

Results:

There were no significant differences between the 5 RunTTs for any of the performance, physiological, or subjective responses (P > .05). The trial-to-trial variability in pacing (ie, separate quarters) was typically low, with an average within-athlete coefficient of variation of 3.3%, being highest at the start and end of the 4 min. Total distance covered and distance covered over the first and last 2 min for best and worst performances were 1137 ± 94 and 1090 ± 89 (P < .001), 565 ± 53 and 526 ± 40 m (P = .002), and 572 ± 47 and 565 ± 54 m (P = .346), respectively.

Conclusions:

Negative pacing strategies were evident during both the best and the worst performances of the RunTT. Best performances were characterized by more aggressive pacing over the first 2 min compared with worst performances. In addition, the relatively low trial-to-trial variability in running speed suggests that pacing strategies are similar during a series of 4-min self-paced running time trials.

Restricted access

Laurent Mourot, Nicolas Fabre, Erik Andersson, Sarah Willis, Martin Buchheit and Hans-Christer Holmberg

Postexercise heart-rate (HR) recovery (HRR) indices have been associated with running and cycling endurance-exercise performance. The current study was designed (1) to test whether such a relationship also exists in the case of cross-country skiing (XCS) and (2) to determine whether the magnitude of any such relationship is related to the intensity of exercise before obtaining HRR indices. Ten elite male cross-country skiers (mean ± SD; 28.2 ± 5.4 y, 181 ± 8 cm, 77.9 ± 9.4 kg, 69.5 ± 4.3 mL · min−1 · kg−1 maximal oxygen uptake [VO2max]) performed 2 sessions of roller-skiing on a treadmill: a 2 × 3-km time trial and the same 6-km at an imposed submaximal speed followed by a final 800-m time trial. VO2 and HR were monitored continuously, while HRR and blood lactate (BLa) were assessed during 2 min immediately after each 6-km and the 800-m time trial. The 6-km time-trial time was largely negatively correlated with VO2max and BLa. On the contrary, there was no clear correlation between the 800-m time-trial time and VO2, HR, or BLa. In addition, in no case was any clear correlation between any of the HRR indices and performance time or VO2max observed. These findings confirm that XCS performance is largely correlated with VO2max and the ability to tolerate high levels of BLa; however, postexercise HRR showed no clear association with performance. The homogeneity of the group of athletes involved and the contribution of the arms and upper body to the exercise preceding determination of HRR may explain this absence of a relationship.

Restricted access

Amelia Carr, Kerry McGawley, Andrew Govus, Erik P. Andersson, Oliver M. Shannon, Stig Mattsson and Anna Melin

This study investigated the energy, macronutrient, and fluid intakes, as well as hydration status (urine specific gravity), in elite cross-country skiers during a typical day of training (Day 1) and a sprint skiing competition the following day (Day 2). A total of 31 (18 males and 13 females) national team skiers recorded their food and fluid intakes and urine specific gravity was measured on Days 1 and 2. In addition, the females completed the Low Energy Availability in Females Questionnaire to assess their risk of long-term energy deficiency. Energy intake for males was 65 ± 9 kcal/kg on Day 1 versus 58 ± 9 kcal/kg on Day 2 (p = .002) and for females was 57 ± 10 on Day 1 versus 55 ± 5 kcal/kg on Day 2 (p = .445). Carbohydrate intake recommendations of 10–12 g·kg−1·day−1 were not met by 89% of males and 92% of females. All males and females had a protein intake above the recommended 1.2–2.0 g/kg on both days and a postexercise protein intake above the recommended 0.3 g/kg. Of the females, 31% were classified as being at risk of long-term energy deficiency. In the morning of Day 1, 50% of males and 46% of females were dehydrated; on Day 2, this was the case for 56% of males and 38% of females. In conclusion, these data suggest that elite cross-country skiers ingested more protein and less carbohydrate than recommended and one third of the females were considered at risk of long-term energy deficiency. Furthermore, many of the athletes were dehydrated prior to training and competition.