Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Erin Calaine Inglis x
Clear All Modify Search
Restricted access

Erin Calaine Inglis, Danilo Iannetta, Louis Passfield and Juan M. Murias

Purpose: To (1) compare the power output (PO) for both the 20-minute functional threshold power (FTP20) field test and the calculated 95% (FTP95%) with PO at maximal lactate steady state (MLSS) and (2) evaluate the sensitivity of FTP95% and MLSS to training-induced changes. Methods: Eighteen participants (12 males: 37 [6] y and 6 females: 28 [6] y) performed a ramp-incremental cycling test to exhaustion, 2 to 3 constant-load MLSS trials, and an FTP20 test. A total of 10 participants returned to repeat the test series after 7 months of training. Results: The PO at FTP20 and FTP95% was greater than that at MLSS (P = .00), with the PO at MLSS representing 88.5% (4.8%) and 93.1% (5.1%) of FTP and FTP95%, respectively. MLSS was greater at POST compared with PRE training (12 [8] W) (P = .002). No increase was observed in mean PO at FTP20 and FTP95% (P = .75). Conclusions: The results indicate that the PO at FTP95% is different to MLSS, and that changes in the PO at MLSS after training were not reflected by FTP95%. Even when using an adjusted percentage (ie, 88% rather than 95% of FTP20), the large variability in the data is such that it would not be advisable to use this as a representation of MLSS.

Restricted access

Erin Calaine Inglis, Danilo Iannetta, Daniel A. Keir and Juan M. Murias

Purpose: To evaluate whether the coherence in the oxygen uptake (V˙O2) associated with the respiratory compensation point (RCP), near-infrared spectroscopy-derived muscle deoxyhemoglobin ([HHb]) break point ([HHb]BP), and maximal lactate steady state (MLSS) would persist at the midpoint and endpoint of a 7-month training and racing season. Methods: Eight amateur male cyclists were tested in 3 separate phases over the course of a cycling season (PRE, MID, and POST). Testing at each phase included a ramp-incremental test to exhaustion to determine RCP and [HHb]BP. The PRE and POST phases also included constant power output rides to determine MLSS. Results: Compared with PRE, V˙O2 at both RCP and [HHb]BP was greater at MID (delta: RCP 0.23 [0.14] L·min−1, [HHb]BP 0.33 [0.17] L·min−1) and POST (delta: RCP 0.21 [0.12], [HHb]BP 0.30 [0.14] L·min−1) (P < .05). V˙O2 at MLSS also increased from PRE to POST (delta: 0.17 [12] L·min−1) (P < .05). V˙O2 was not different at RCP, [HHb]BP, and MLSS at PRE (3.74 [0.34], 3.64 [0.40], 3.78 [0.23] L·min−1) or POST (3.96 [0.25], 3.95 [0.32], 3.94 [0.18] L·min−1) respectively, and RCP (3.98 [0.33] L·min−1) and [HHb]BP (3.97 [0.34] L·min−1) were not different at MID (P > .05). PRE–MID and PRE–POST changes in V˙O2 associated with RCP, [HHb]BP, and MLSS were strongly correlated (range: r = .85–.90) and demonstrated low mean bias (range = −.09 to .12 L·min−1). Conclusions: At all measured time points, V˙O2 at RCP, [HHb]BP, and MLSS were not different. Irrespective of phase comparison, direction, or magnitude of V˙O2 changes, intraindividual changes between each index were strongly related, indicating that interindividual differences were reflected in the group mean response and that their interrelationships are beyond coincidental.