Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Esther Thelen x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Esther Thelen

Restricted access

Rosa M. Angulo-Kinzler, Beverly Ulrich, and Esther Thelen

In this study we used a biofeedback system to evaluate the joint movements of 3-month-old infants in real-time. The computer was set to discriminate a specific leg position as the motor task infants had to discover to receive the reinforcement from a mobile. Two groups of infants were given two different tasks: (1) to cross 85° knee flexion in the flexion group, and (2) to cross 35° knee extension in extension group. The results from this experiment suggest that infants in both groups learned the task; however, they used different motor solutions. Infants in the flexion group demonstrated two distinctly different motor solutions to make the mobile move. One was movement-based and was characterized by an increase in kicking frequency, while the other was posture-based. In contrast, most infants in the extension group only used the movement-based solution to gain the reinforcements. Controlling the knee at the 35° extension positions seems to be more difficult than at the 85° flexion positions for 3-month-old infants. These results indicate that infants are capable of discovering narrowly defined leg motor solutions and that, depending on their individual characteristics and the task demands, they select different motor solutions.

Restricted access

Thomas A. Stoffregen, Karen Adolph, Esther Thelen, Kathleen M. Gorday, and Yang-Yi Sheng

This study was undertaken to determine whether young children, after only a few weeks standing experience, could respond adaptively to the dynamical constraints imposed by different support surfaces. The spontaneous postural motions of young children (13-14 months old) were observed as they stood on surfaces that differed in length, friction, and rigidity. There were no externally imposed perturbations to stance. Children's postural control was remarkably adaptive: There were few falls on any of the surfaces. Moreover, the children showed surface-specific utilization of manual postural control (holding onto wooden poles), suggesting that manual control is an adaptive strategy for postural control. Finally, kinematic analysis suggested that, in some instances, children were able to employ independent control of the hips, contrary to previous models which had suggested that hip motions could not be controlled before the age of 3 years. Small, slow hip movements useful in controlling spontaneous sway (unperturbed stance) may serve as a basis for the development of larger, faster hip movements that are associated with imposed perturbations.