Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Fabio Borrani x
Clear All Modify Search
Restricted access

Sarah J. Willis, Jules Gellaerts, Benoît Mariani, Patrick Basset, Fabio Borrani and Grégoire P. Millet

Purpose: To examine the net oxygen cost, oxygen kinetics, and kinematics of level and uphill running in elite ultratrail runners. Methods: Twelve top-level ultradistance trail runners performed two 5-min stages of treadmill running (level, 0%, men 15 km·h−1, women 13 km·h−1; uphill, 12%, men 10 km·h−1, women 9 km·h−1). Gas exchanges were measured to obtain the net oxygen cost and assess oxygen kinetics. In addition, running kinematics were recorded with inertial measurement unit motion sensors on the wrist, head, belt, and foot. Results: Relationships resulted between level and uphill running regarding oxygen uptake (V˙O2), respiratory exchange ratio, net energy, and oxygen cost, as well as oxygen kinetics parameters of amplitude and time delay of the primary phase and time to reach V˙O2 steady state. Of interest, net oxygen cost demonstrated a significant correlation between level and uphill conditions (r = .826, P < .01). Kinematics parameters demonstrated relationships between level and uphill running, as well (including contact time, aerial time, stride frequency, and stiffness; all P < .01). Conclusion: This study indicated strong relationships between level and uphill values of net oxygen cost, the time constant of the primary phase of oxygen kinetics, and biomechanical parameters of contact and aerial time, stride frequency, and stiffness in elite mountain ultratrail runners. The results show that these top-level athletes are specially trained for uphill locomotion at the expense of their level running performance and suggest that uphill running is of utmost importance for success in mountain ultratrail races.

Restricted access

Joana F. Reis, Gregoire P. Millet, Davide Malatesta, Belle Roels, Fabio Borrani, Veronica E. Vleck and Francisco B. Alves


The aim of this study was to compare VO2 kinetics during constant power cycle exercise measured using a conventional facemask (CM) or a respiratory snorkel (RS) designed for breath-by-breath analysis in swimming.


VO2 kinetics parameters—obtained using CM or RS, in randomized counterbalanced order—were compared in 10 trained triathletes performing two submaximal heavy-intensity cycling square-wave transitions. These VO2 kinetics parameters (ie, time delay: td1, td2; time constant: τ1, τ2; amplitude: A1, A2, for the primary phase and slow component, respectively) were modeled using a double exponential function. In the case of the RS data, this model incorporated an individually determined snorkel delay (ISD).


Only td1 (8.9 ± 3.0 vs 13.8 ± 1.8 s, P < .01) differed between CM and RS, whereas all other parameters were not different (τ1 = 24.7 ± 7.6 vs 21.1 ± 6.3 s; A1 = 39.4 ± 5.3 vs 36.8 ± 5.1 mL·min−1·kg−1; td = 107.5 ± 87.4 vs 183.5 ± 75.9 s; A2' (relevant slow component amplitude) = 2.6 ± 2.4 vs 3.1 ± 2.6 mL·min−1·kg−1 for CM and RS, respectively).


Although there can be a small mixture of breaths allowed by the volume of the snorkel in the transition to exercise, this does not appear to significantly influence the results. Therefore, given the use of an ISD, the RS is a valid instrument for the determination of VO2 kinetics within submaximal exercise.