Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Fernando Silva Guimarães x
Clear All Modify Search
Restricted access

Telassin Silva Homem, Fernando Silva Guimarães, Maurício Santos Soares, Leandro Kasuki, Mônica Roberto Gadelha and Agnaldo José Lopes

Advances in the knowledge of acromegaly are leading to an increase in the survival rate of acromegalic subjects. This study was conducted to evaluate balance control, risk of falls, and peripheral muscle function in acromegalic older adults. Seventeen older subjects with acromegaly (67 [63–73] years) and 20 paired control subjects were evaluated with balance scales, force platform, and knee isokinetic dynamometry tests. There were significant differences between the groups on several balance and gait scales, with a worse performance and greater risk of falls in the acromegalic older adults. Acromegalic older adults had lower values for peak torque, maximum repetition of the total work, and total work during extension at 240°/s. The acromegalic older adults had higher values in the medial-lateral range. Acromegaly subjects had lateral instability that compromises their body balance and increases the risk of falls. Moreover, there was a propensity for muscle fatigue in these individuals.

Restricted access

Patricia Guimaraes Couto, Romulo Bertuzzi, Carla Caroline de Souza, Hessel Marani Lima, Maria Augusta Peduti Dal Molin Kiss, Fernando Roberto de-Oliveira and Adriano Eduardo Lima-Silva

This study analyzed the pacing employed by young runners in 10,000 m time-trials under 3 dietary regimens of different carbohydrate (CHO) intakes. Nineteen boys (13–18 years) ate either their normal CHO diet (56% CHO), high (70% CHO), or low (25% CHO) CHO diets for 48 hr; the boys then performed a 10,000 m run (crossover design). The high CHO diet led to faster final sprint (14.4 ± 2.2 km·h-1) and a better performance (50.0 ± 7.0 min) compared with the low CHO diet (13.3 ± 2.4 km·h-1 and 51.9 ± 8.3 min, respectively, p < .05). However, the final sprint and performance time in the high CHO or low CHO diets were statistically not significantly different from the normal CHO diet (13.8 ± 2.2 km·h-1 and 50.9 ± 7.4 min; p > .05). CHO oxidation rate during the constant load exercise at 65% of VO2max was elevated in high CHO diet (1.05 ± 0.38 g·min-1) compared with low CHO diet (0.63 ± 0.36 g·min-1). The rating of perceived exertion increased linearly throughout the trial, independently of the dietary regimen. In conclusion, the high CHO diet induced higher CHO oxidation rates, increased running speed in the final 400 m and enhanced overall running performance, compared with low CHO.