Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Filip Sabol x
Clear All Modify Search
Restricted access

Filip Sabol, Jozo Grgic and Pavle Mikulic

Purpose: To examine the acute effects of 3 doses of caffeine on upper- and lower-body ballistic exercise performance and to explore if habitual caffeine intake affects the acute effects of caffeine ingestion on ballistic exercise performance. Methods: Twenty recreationally active male participants completed medicine-ball-throw and vertical-jump tests under 4 experimental conditions (placebo and 2, 4, and 6 mg·kg−1 of caffeine). Results: One-way repeated-measures analysis of variance (ANOVA) with subsequent post hoc analyses indicated that performance in the medicine-ball-throw test improved, compared with placebo, only with a 6 mg·kg−1 dose of caffeine (P = .032). Effect size, calculated as the mean difference between the 2 measurements divided by the pooled SD, amounted to 0.29 (+3.7%). For the vertical-jump test, all 3 caffeine doses were effective (compared with placebo) for acute increases in performance (P values .022–.044, effect sizes 0.35–0.42, percentage changes +3.7% to +4.1%). A 2-way repeated-measures ANOVA indicated that there was no significant group × condition interaction effect, suggesting comparable responses between low (≤100 mg·d−1) and moderate to high (>100 mg·d−1) caffeine users to the experimental conditions. Conclusion: Caffeine doses of 2, 4, and 6 mg·kg−1 seem to be effective for acute enhancements in lower-body ballistic exercise performance in recreationally trained male individuals. For the upper-body ballistic exercise performance, only a caffeine dose of 6 mg·kg−1 seems to be effective. The acute effects of caffeine ingestion do not seem to be affected by habitual caffeine intake; however, this requires further exploration.

Restricted access

Jozo Grgic, Filip Sabol, Sandro Venier, Ivan Mikulic, Nenad Bratkovic, Brad J. Schoenfeld, Craig Pickering, David J. Bishop, Zeljko Pedisic and Pavle Mikulic

Purpose: To explore the effects of 3 doses of caffeine on muscle strength and muscle endurance. Methods: Twenty-eight resistance-trained men completed the testing sessions under 5 conditions: no-placebo control, placebo control, and with caffeine doses of 2, 4, and 6 mg·kg−1. Muscle strength was assessed using the 1-repetition-maximum test; muscle endurance was assessed by having the participants perform a maximal number of repetitions with 60% 1-repetition maximum. Results: In comparison with both control conditions, only a caffeine dose of 2 mg·kg−1 enhanced lower-body strength (d = 0.13–0.15). In comparison with the no-placebo control condition, caffeine doses of 4 and 6 mg·kg−1 enhanced upper-body strength (d = 0.07–0.09) with a significant linear trend for the effectiveness of different doses of caffeine (P = .020). Compared with both control conditions, all 3 caffeine doses enhanced lower-body muscle endurance (d = 0.46–0.68). For upper-body muscle endurance, this study did not find significant effects of caffeine. Conclusions: This study revealed a linear trend between the dose of caffeine and its effects on upper-body strength. The study found no clear association between the dose of caffeine and the magnitude of its ergogenic effects on lower-body strength and muscle endurance. From a practical standpoint, the magnitude of caffeine’s effects on strength is of questionable relevance. A low dose of caffeine (2 mg·kg−1)—for an 80-kg individual, the dose of caffeine in 1–2 cups of coffee—may produce substantial improvements in lower-body muscle endurance with the magnitude of the effect being similar to that attained using higher doses of caffeine.