Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Gøran Paulsen x
Clear All Modify Search
Restricted access

Thomas Haugen, Gøran Paulsen, Stephen Seiler and Øyvind Sandbakk

Maximal aerobic and anaerobic power are crucial performance determinants in most sport disciplines. Numerous studies have published power data from elite athletes over the years, particularly in runners, cyclists, rowers, and cross-country (XC) skiers. This invited review defines the current “world records” in human upper limits of aerobic and anaerobic power. Currently, V˙O2max values of ∼7.5 and 7.0 L·min−1 in male XC skiers and rowers, respectively, and/or ∼90 mL·kg−1·min−1 in XC skiers, cyclists, and runners can be described as upper human limits for aerobic power. Corresponding values for women are slightly below 5.0 L·min−1 in rowers and XC skiers and ∼80 mL·kg−1·min−1 in XC skiers and runners. Extremely powerful male athletes may reach ∼85 W·kg−1 in countermovement jump (peak vertical power) and ∼36 W·kg−1 in sprint running (peak horizontal power), cycling (instantaneous power during force–velocity testing from a standing position), and rowing (instantaneous power). Similarly, their female counterparts may reach ∼70 W·kg−1 in countermovement jump and ∼30 W·kg−1 in sprint running, cycling, and rowing. The presented values can serve as reference values for practitioners and scientists working with elite athletes. However, several methodological considerations should be taken into account when interpreting the results. For example, calibrated apparatus and strict procedures are required to ensure high measurement validity and reliability, and the sampling rate for anaerobic power assessments must be strictly predetermined and carefully measured. Doping is also a potential confounding factor when interpreting the human upper limits of aerobic and anaerobic power.

Restricted access

Paul A. Solberg, Will G. Hopkins, Gøran Paulsen and Thomas A. Haugen

Purpose: To quantify age of peak performance and performance improvements in the years preceding peak age in elite weightlifting and powerlifting athletes using results from powerlifting World Championships in 2003–2017 and weightlifting World Championships and Olympic Games in 1998–2017. Methods: Individual performance trends were derived by fitting a quadratic curve separately to each athlete’s performance and age data. Effects were evaluated using magnitude-based inferences. Results: Peak age (mean [SD]) was 35 (7) y for powerlifters and 26 (3) y for weightlifters, a large most likely substantial difference of 9, ±1 y (mean, 90% confidence limit). Men showed possibly higher peak age than women in weightlifting (0.8, ±0.7 y; small) and a possibly lower peak age in powerlifting (1.3, ±1.8 y; trivial). Peak age of athletes who ever won a medal was very likely less than that of nonmedalists in weightlifting (1.3, ±0.6 y; small), while the difference in powerlifters was trivial but unclear. Five-year improvements prior to peak age were 12% (10%) for powerlifters and 9% (7%) for weightlifters, a small possibly substantial difference (2.9, ±2.1%). Women exhibited possibly greater improvements than men in powerlifting (2.7, ±3.8%; small) and very likely greater in weightlifting (3.5, ±1.6%; small). Medalists possibly improved less than nonmedalists among powerlifters (−1.7, ±2.3%; small), while the difference was likely trivial for weightlifters (2.3, ±1.8%). Conclusion: These novel insights on performance development will be useful for practitioners evaluating strategies for achieving success.

Restricted access

Erik Trøen, Bjarne Rud, Øyvind Karlsson, Camilla Høivik Carlsen, Matthias Gilgien, Gøran Paulsen, Ola Kristoffer Tosterud and Thomas Losnegard

Purpose: To investigate how self-selected pole length (PL) of ∼84% (PL84%) compared with ∼90% (PL90%) of body height influenced performance during a 700-m time trial with undulating terrain on snow. Methods: Twenty-one cross-country skiers, 7 of whom were women, performed 4 trials at a maximal effort in a counterbalanced fashion with PL84% and PL90% separated by 20-minute breaks between trials. In trials I and II, only double poling was allowed, while in trials III and IV, skiers used self-selected classical subtechniques. Continuous speed, cyclic parameters, and heart rate were collected using microsensors in addition to a post-time-trial rating of perceived exertion (RPE). Results: The 700-m times with only double poling were significantly shorter with PL90% than PL84% (mean ± 95% confidence limits –1.6% ± 1.0%). Segment analyses showed higher speed with PL90% in uphill sections than with PL84% (3.7% ± 2.1%), with the greatest difference found for the female skiers (5.6% ± 2.9%). In contrast, on flat terrain at high skiing speeds, speed was reduced with PL90% compared with PL84% (–1.5% ± 1.4%); this was only significant for the male skiers. During free choice of classical subtechniques, PL did not influence performance in any segments, choice of subtechnique, or cycle rate during the trials. No differences in rating of perceived exertion or heart rate between PLs were found. Conclusions: PL90% improved performance in uphills at low speeds when using double poling but hindered performance on flat terrain and at higher speeds compared with self-selected PLs. Choice of PL should, therefore, be based on racecourse topography, preferred subtechniques, and the skier’s physiological and technical abilities.