Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Gavriil G. Arsoniadis x
Clear All Modify Search
Restricted access

Petros G. Botonis, Ioannis Malliaros, Gavriil G. Arsoniadis, Theodoros I. Platanou and Argyris G. Toubekis

Purpose: To examine the acute physiological responses and internal training load of long-interval swimming and water polo–specific drills in high-level water polo players. Methods: A total of 10 water polo players performed both a high-intensity swimming without ball (SW) with intensity corresponding to 90% of their maximum speed previously attained during a 300-m swimming test or a counterattack ball drill (CA). Both SW and CA conditions were designed to provide equal time exposure. Thus, 3 bouts of 4 minutes duration and a 3-minute passive rest were performed in each condition. The players’ physiological responses were assessed by continuous monitoring heart rate (HR) during CA and SW as well as by measuring blood lactate at the end of each condition. Rating of perceived exertion was recorded at the end of each bout. The Edwards summated HR zones were used to measure internal training load. Results: Both peak and mean HR were similar between SW and CA, and no difference was detected between conditions in the percentage time spent at 90% to 100% of HRpeak. Postexercise blood lactate (8.5 [4.1] vs 11.5 [1.9] mmol·L−1) and rating of perceived exertion (8.1 [0.8] vs 8.7 [0.5] a.u.) values were lower in CA compared with SW (P < .05). Conclusions: SW compared with CA showed similar cardiac stress but increased anaerobic metabolism activation and higher rating of perceived exertion. Either CA or SW may be both used in training practice as a means to effectively train physical conditioning of water polo players, whereas CA may also facilitate tactical preparation.

Restricted access

Gavriil G. Arsoniadis, Gregory C. Bogdanis, Gerasimos Terzis and Argyris G. Toubekis

Purpose: To examine the acute effect of dry-land strength training on physiological and biomechanical parameters in a subsequent swim training session. Methods: Twelve male swimmers (age: 19.0 [2.2] y, peak oxygen uptake: 65.5 [11.4] mL·kg−1·min−1) performed a 5 × 200-m test with progressively increasing intensity. Blood lactate (BL) concentration was measured after each 200-m bout, and the speed corresponding to 4 mmol·L−1 (V4) was calculated. In the experimental (EXP) and control (CON) conditions, swimmers participated in a swim training session consisting of 1000-m warm-up, a bout of 10-second tethered swimming sprint, and 5 × 400 m at V4. In EXP condition, swimmers completed a dry-land strength training session (load: 85% of 1-repetition maximum) 15 minutes before the swimming session. In CON condition, swimmers performed the swimming session only. Oxygen uptake, BL concentration, arm-stroke rate, arm-stroke length, and arm-stroke efficiency were measured during the 5 × 400 m. Results: Force in the 10-second sprint was not different between conditions (P = .61), but fatigue index was higher in the EXP condition (P = .03). BL concentration was higher in EXP condition and showed large effect size at the fifth 400-m repetition compared with CON condition (6.4 [2.7] vs 4.6 [2.8] mmol·L−1, d = 0.63). During the 5 × 400 m, arm-stroke efficiency remained unchanged, arm-stroke length was decreased from the third repetition onward (P = .01), and arm-stroke rate showed a medium increment in EXP condition (d = 0.23). Conclusions: Strength training completed 15 minutes before a swim training session caused moderate changes in biomechanical parameters and increased BL concentration during swimming. Despite these changes, swimmers were able to maintain force and submaximal speed during the endurance training session.