Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Geoffrey Dover x
Clear All Modify Search
Restricted access

Susan Miniello, Geoffrey Dover, Michael Powers, Mark Tillman and Erik Wikstrom

Context:

Previous studies have suggested that cryotherapy affects neuromuscu-lar function and therefore might impair dynamic stability. If cryotherapy affects dynamic stability, clinicians might alter their decisions regarding returning athletes to play immediately after treatment.

Objective:

To assess the effects of lower leg cold immersion on muscle activity and dynamic stability of the lower extremity.

Design:

Within-subject time-series design with 1 pretest and 2 posttests.

Setting:

A climate-controlled biomechanics laboratory.

Participants:

17 healthy women.

Interventions:

20-minute cold-water immersion.

Main Outcome Measures:

Preparatory and reactive electromyographic activity of the tibialis anterior and peroneus longus and time to stabilization after a jump landing.

Results:

Preparatory activity of the tibialis anterior increased after treatment, whereas preparatory and reactive peroneus longus activity decreased. Both returned to baseline after a 5-minute recovery. Time to stabilization did not change.

Conclusions:

Lower leg cold-immersion therapy does not impair dynamic stability in healthy women during a jump-landing task. Return to participation after a cryotherapy treatment is not contraindicated for healthy athletes.

Restricted access

Geoffrey Dover and Paul Borsa

Column-editor : Thomas W. Kaminski

Restricted access

Stephanie Di Lemme, Jon Sanderson, Richard G. Celebrini and Geoffrey C. Dover

A 22-year-old male professional hockey player sustained a nondisplaced talus fracture. We present a comprehensive nonsurgical rehabilitation that includes blood flow restriction (BFR) training. Pain and function measures improved throughout the rehabilitation. Lower limb circumference did not change postinjury. The patient returned to play in less than 7 weeks, while current talar fracture management protocols indicate surgical fixation and 6 weeks of immobilization. BFR training may be useful in injury rehabilitation, negating muscle atrophy and increasing muscle strength while allowing the patient to exercise at relatively low loads. This is the first case of BFR training implemented in early fracture rehabilitation of an athlete.