Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Georgios Papadopoulos x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Theophanis Siatras, Georgios Papadopoulos, Dimitra Mameletzi, Vasilios Gerodimos, and Spiros Kellis

Although warm-up and stretching exercises are routinely performed by gymnasts, it is suggested that stretching immediately prior to an activity might affect negatively the athletic performance. The focus of this investigation was on the acute effect of a protocol, including warm-up and static and dynamic stretching exercises, on speed during vaulting in gymnastics. Eleven boys were asked to perform three different protocols consisting of warm-up, warm-up and static stretching and warm-up and dynamic stretching, on three nonconsecutive days. Each protocol was followed by a “handspring” vault. One-way analysis of variance for repeated-measures showed a significant difference in gymnasts’ speed, following the different protocols. Tukey’s post hoc analysis revealed that gymnasts mean speed during the run of vault was significantly decreased after the application of the static stretching protocol. The findings of the present study indicate the inhibitory role of an acute static stretching in running speed in young gymnasts.

Restricted access

Christos Papadopoulos, Vasilios I. Kalapotharakos, Georgios Noussios, Konstantinos Meliggas, and Evangelia Gantiraga

Objective:

To examine the effect of static stretching on maximal voluntary contraction (MVC) and isometric force-time curve characteristics of leg extensor muscles and EMG activity of rectus femoris (RF), biceps femoris (BF), and gastrocnemius (GA).

Design:

A within subjects experimental design.

Participants:

Ten healthy students were tested after a jogging and a jogging/stretch protocol.

Intervention:

The stretching protocol involved a 10 min jog and seven static stretching exercises.

Main Outcomes:

Measurements included MVC, time achieved to MVC (TMVC), force at 100ms (F100), index of relative force (IRF), index of rate of force development (IRFD), and average integrated EMG activity (AEMG).

Results:

There were slight but no significant changes in MVC (1%), TMVC (4.8%), F100 (7.8%), IRF (1%), and IRFD (3.5%) between measurement. A significant difference (21%; P < 0.05) in AEMG of RF was found.

Conclusions:

The present study indicated that a moderate volume of static stretching did not alter significantly the MVC and the isometric force-time curve characteristics. Neural inhibition, as it is reflected from AEMG of RF, did not alter MVC and isometric force-time curve characteristics.