Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Germán Vicente-Rodríguez x
  • All content x
Clear All Modify Search
Restricted access

Alba Gómez-Cabello, Germán Vicente-Rodríguez, Isabel Navarro-Vera, Diana Martinez-Redondo, Carmen Díez-Sánchez, and José Antonio Casajús

The aim of this study was to provide information about the relationship of bone mineral content (BMC) and density (BMD) with some physical-fitness-related variables in a sample of women with fibromyalgia (FM) and age-matched women without FM. Twenty-eight women clinically diagnosed with FM (age 51.1 ± 8.4 yr, M ± SD) and 22 age-matched controls participated in the study. Whole-body BMC and BMD, lean mass, handgrip strength, quadriceps strength, and cardiovascular fitness were measured in all participants. The association between physical-fitness variables and bone-related variables was tested by linear regression controlling for body weight as a possible confounder. There were no differences in BMC or BMD between groups. Women with FM had lower values of handgrip strength, quadriceps strength, and VO2peak than the control group. Handgrip strength and aerobic capacity were associated with BMC and BMD and quadriceps strength was associated with BMD in women with FM; however, only VO2peak was associated with BMC in the group of women without FM. Bone mass of women with FM may be more susceptible to changes in physical fitness than that of the women without fibromyalgia.

Restricted access

Gabriel Lozano-Berges, Ángel Matute-Llorente, Alejandro Gómez-Bruton, Alejandro González-Agüero, Germán Vicente-Rodríguez, and José A. Casajús

The aims of this study were (a) to determine which of the most used anthropometric equations was the most accurate to estimate percentage of body fat (%BF), (b) to develop a new specific anthropometric equation, and (c) to validate this football-specific equation. A total of 126 (13.3 ± 0.6 years) football players (86 males and 40 females) participated in the present study. Participants were divided into two groups: 98 players were included in the assessment of existing equations and in the development of the new prediction equation, and 28 players were used to validate it. %BF was measured with dual-energy X-ray absorptiometry (DXA) and also estimated with six different %BF anthropometric equations: Johnston, Slaughter, Carter, Faulkner, Deurenberg, and Santi-Maria. Paired t tests were used to analyze differences between methods. A football-specific equation was developed by a stepwise linear regression. The existing anthropometric equations showed significant bias for %BF when compared with DXA (p < .001; constant error ranged from −4.57% to 9.24%; standard error of estimate ranged from 2.46 to 4.20). On the other hand, the developed football-specific equation was %BF = 11.115 + 0.775 (triceps skinfold) + 0.193 (iliac crest skinfold) − 1.606 (sex). The developed equation demonstrated neither %BF differences (p = .121; constant error = 0.57%; standard error of estimate = 0.36) when compared with DXA, presenting a high cross-validation prediction power (R 2 = .85). Published anthropometric equations were not accurate to estimate %BF in adolescent football players. Due to the fact that the developed football-specific equation showed neither differences nor heteroscedasticity when compared with DXA, this equation is recommended to assess %BF in adolescent football players.

Restricted access

Borja Muniz-Pardos, Alejandro Gómez-Bruton, Ángel Matute-Llorente, Alex González-Agüero, Alba Gómez-Cabello, José A. Casajús, and Germán Vicente-Rodríguez

Purpose: To examine the effects of a 6-month whole-body vibration (WBV) training on lower-body strength (LBS), lower-body power (LBP), and swimming performance in adolescent trained swimmers. Methods: Thirty-seven swimmers (23 males and 14 females; 14.8 [1.3] y) were randomly assigned to the WBV (n = 20) or the control group (n = 17). Isometric LBS (knee extension and half squat) and LBP (vertical and horizontal jumps and 30-m sprint) tests were performed before and after the intervention period. Swimming performance times in 100 m were collected from official competitions. As time × sex interaction was not found for any variable (P > .05), males and females were analyzed as a whole. Results: Within-group analyses showed a most likely beneficial moderate effect of WBV on isometric knee extension (effect size [ES] = 0.63), 30-m sprint test (ES = 0.62), and 100-m performance (ES = 0.25), although these were corresponded with comparable small to moderate effects in the control group (ES = 0.73, 0.71, and 0.20, respectively). The control group obtained a small possibly beneficial effect of swimming-only training on vertical jump performance, whereas no effect was observed in the WBV group. Unclear effects were observed for the rest of the variables assessed. Between-group analyses revealed unclear effects of WBV training when compared with the control condition in all studied variables. Conclusions: There is no current evidence to support the use of WBV training, and therefore, coaches and sports specialists should select other methods of training when the aim is to increase LBS, LBP, or swimming performance.

Restricted access

Palma ChiMón, Francisco B. Ortega, Jonatan R. Ruiz, Ilse De Bourdeaudhuij, David Martínez-Gómez, Germán Vicente-Rodriguez, Kurt Widhalm, Dénes Molnar, Frédéric Gottrand, Marcela González-Gross, Dianne S. Ward, Luis A. Moreno, Manuel J. Castillo, and Michael Sjöström

Chillón and Ruiz are with the Department of Physical Education and Sport, University of Granada, Spain. Chillón and Ward are with the Center for Health Promotion and Disease Prevention, University of North Carolina at Chapel Hill, NC, USA. Ortega, Ruiz and Sjöström are with the Unit for Preventive Nutrition, Department of Biosciences and Nutrition, Karolinska Institutet, Sweden. Ortega and Castillo are with the Department of Medical Physiology, University of Granada, Spain. De Bourdeaudhuij is with the Department of Movement and Sport Sciences, Ghent University, Belgium. Martínez-Gómez is with the Immunonutrition Research Group, Department of Metabolism and Nutrition, ICTAN, Spanish National Research Council (CSIC), Spain. Vicente-Rodríguez and Moreno are with Growth, Exercise, Nutrition and Development (GENUD) Research Group, Universidad de Zaragoza, Spain. Widhalm is with the Department of Paediatrics, Division of Clinical Nutrition, Medical University of Vienna, Austria. Molnar is with the Deprtment of Paediatrics, Clinical Center, University of Pécs, Hungary. Gottrand is with Inserm U995, University Lille2 and CIC-9301-CH&U-Inserm, University Hospital of Lille, France. González-Gross is with the Department of Health and Human Performance, Universidad Politécnica de Madrid, Spain.