Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Graham L. Jones x
Clear All Modify Search
Restricted access

Stephanie L. Jones and Graham E. Caldwell

This study examined the role of mono- and biarticular muscles in control of countermovement jumps (CMJ) in different directions. It was hypothesized that monoarticular muscles would demonstrate the same activity regardless of jump direction, based on previous studies which suggest their role is to generate energy to maximize center-of-mass (CM) velocity. In contrast, biarticular activity patterns were expected to change to control the direction of the ground reaction force (GRF) and CM velocity vectors. Twelve participants performed maximal CMJs in four directions: vertical, forward, intermediate forward, and backward. Electromyographical data from 4 monoarticular and 3 biarticular lower extremity muscles were analyzed with respect to segmental kinematics and kinetics during the jumps. The biarticular rectus femoris (RF), hamstrings (HA), and gastrocnemius all exhibited changes in activity magnitude and pattern as a function of jump angle. In particular, HA and RF demonstrated reciprocal trends, with HA activity increasing as jump angle changed from backward to forward, while RF activity was reduced in the forward jump condition. The vastus lateralis and gluteus maximus both demonstrated changes in activity patterns, although the former was the only monoarticular muscle to change activity level with jump direction. Mono- and biarticular muscle activities therefore did not fit with their hypothesized roles. CM and segmental kinematics suggest that jump direction was initiated early in the countermovement, and that in each jump direction the propulsion phase began from a different position with unique angular and linear momentum. Issues that dictated the muscle activity patterns in each jump direction were the early initiation of appropriate forward momentum, the transition from countermovement to propulsion, the control of individual segment rotations, the control of GRF location and direction, and the influence of the subsequent landing.

Restricted access

Heather M. Logan-Sprenger, George J. F. Heigenhauser, Graham L. Jones and Lawrence L. Spriet

This study investigated the effects of progressive mild dehydration during cycling on whole-body substrate oxidation and skeletal-muscle metabolism in recreationally active men. Subjects (N = 9) cycled for 120 min at ~65% peak oxygen uptake (VO2peak 22.7 °C, 32% relative humidity) with water to replace sweat losses (HYD) or without fluid (DEH). Blood samples were taken at rest and every 20 min, and muscle biopsies were taken at rest and at 40, 80, and 120 min of exercise. Subjects lost 0.8%, 1.8%, and 2.7% body mass (BM) after 40, 80, and 120 min of cycling in the DEH trial while sweat loss was not significantly different between trials. Heart rate was greater in the DEH trial from 60 to 120 min, and core temperature was greater from 75 to 120 min. Rating of perceived exertion was higher in the DEH trial from 30 to 120 min. There were no differences in VO2, respiratory-exchange ratio, total carbohydrate (CHO) oxidation (HYD 312 ± 9 vs. DEH 307 ± 10 g), or sweat rate between trials. Blood lactate was significantly greater in the DEH trial from 20 to 120 min with no difference in plasma free fatty acids or epinephrine. Glycogenolysis was significantly greater (24%) over the entire DEH vs. HYD trial (433 ± 44 vs. 349 ± 27 mmol · kg−1 · dm−1). In conclusion, dehydration of <2% BM elevated physiological parameters and perceived exertion, as well as muscle glycogenolysis, during exercise without affecting whole-body CHO oxidation.