Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Grant C. Goulet x
Clear All Modify Search
Restricted access

David Whiteside, Douglas N. Martini, Ronald F. Zernicke and Grant C. Goulet

Purpose:

With a view to informing in-game decision making as it relates to strategy and pitcher health, this study examined changes in pitching-performance characteristics across 9 innings of Major League Baseball (MLB) games.

Methods:

129 starting MLB pitchers met the inclusion criteria for this study. Pitch type, speed, ball movement, release location, and strike-zone data—collected using the MLB’s ball-tracking system, PITCHf/x—were obtained for 1,514,304 pitches thrown from 2008 to 2014.

Results:

Compared with the 1st inning, the proportion of hard pitches thrown decreased significantly until the 7th inning, while the proportions of breaking and off-speed pitches increased. Significant decreases in pitch speed, increases in vertical movement, and decreases in release height emerged no later than the 5th inning, and the largest differences in all variables were generally recorded between the 1st inning and the late innings (7–9). Pitchers were most effective during the 2nd inning and significantly worse in innings 4 and 6.

Conclusion:

These data revealed that several aspects of a starting pitcher’s pitching characteristics exhibited changes from baseline as early as the 2nd or 3rd inning of an MLB game, but this pattern did not reflect the changes in his effectiveness. Therefore, these alterations do not appear to provide reasonable justification for relieving a starting pitcher, although future work must address their relevance to injury. From an offensive standpoint, batters in the MLB should anticipate significantly more hard pitches during the early innings but more breaking and off-speed pitches, with decreasing speed, as the game progresses.

Restricted access

Ronald F. Zernicke, Grant C. Goulet, Peter R. Cavanagh, Benno M. Nigg, James A. Ashton-Miller, Heather A. McKay and Ton van den Bogert

As a field, biomechanics comprises research from the molecular and cellular levels, to tissues, to organs, to organisms and their movements. In the past 50 years, the impact of biomechanics research on society has been amplified dramatically. Here, we provide five brief summaries of exemplar biomechanics results that have had substantial impact on health and our society, namely 1) spaceflight and microgravitational effects on musculoskeletal health; 2) impact forces, soft tissue vibrations, and skeletal muscle tuning affecting human locomotion; 3) childbirth mechanics, injuries, and pelvic floor dysfunction; 4) prescriptive physical activity in childhood to enhance skeletal growth and development to prevent osteoporotic fractures in adulthood and aging; and 5) creative innovations in technology that have transformed the visual arts and entertainment.