Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Grant J. Landers x
Clear All Modify Search
Restricted access

Jacinta M. Saldaris, Grant J. Landers and Brendan S. Lay

Purpose: To examine the effects of precooling via crushed ice ingestion on cognitive function during exercise in the heat. Methods: Eleven active men ingested either 7 g·kg−1 of crushed ice (ICE) or thermoneutral water (CON) 30 minutes before running 90 minutes on a treadmill at a velocity equivalent to 65% VO2peak in hot and humid conditions (35.0°C [0.5°C], 53.1% [3.9%] relative humidity). Participants completed 3 cognitive tasks to investigate decision making (8-choice reaction time [CRT]), working memory (serial seven [S7]), and executive control (color multisource interference task [cMSIT]) on arrival, after precooling, and after running. Results: Precooling significantly decreased preexercise core (T core) and forehead skin temperature in ICE compared with CON, respectively (T core 0.8°C [0.4°C], –0.2°C [0.1°C]; T head –0.5°C [0.4°C], 0.2°C [0.8°C]; P ≤ .05). Postrun, ICE significantly reduced errors compared with CON for CRT (P ≤ .05; d = 0.90; 90% confidence interval, 0.13–1.60) and S7 (P ≤ .05; d = 1.05; 90% confidence interval, 0.26–1.75). Thermal sensation was lower after precooling with ICE (P ≤ .05), but no significant differences were recorded between conditions for cMSIT errors, skin temperature, heart rate, or ratings of perceived exertion or perceived thirst (P > .05). Conclusions: Precooling via ICE maintained cognitive accuracy in decision making and working memory during exercise in the heat. Thus, ICE may have the potential to improve sporting performance by resisting deleterious effects of exercise in a hot and humid environment on cognitive function.

Restricted access

Paul S.R. Goods, Brian T. Dawson, Grant J. Landers, Christopher J. Gore and Peter Peeling

Purpose:

This study aimed to assess the impact of 3 heights of simulated altitude exposure on repeat-sprint performance in teamsport athletes.

Methods:

Ten trained male team-sport athletes completed 3 sets of repeated sprints (9 × 4 s) on a nonmotorized treadmill at sea level and at simulated altitudes of 2000, 3000, and 4000 m. Participants completed 4 trials in a random order over 4 wk, with mean power output (MPO), peak power output (PPO), blood lactate concentration (Bla), and oxygen saturation (SaO2) recorded after each set.

Results:

Each increase in simulated altitude corresponded with a significant decrease in SaO2. Total work across all sets was highest at sea level and correspondingly lower at each successive altitude (P < .05; sea level < 2000 m < 3000 m < 4000 m). In the first set, MPO was reduced only at 4000 m, but for subsequent sets, decreases in MPO were observed at all altitudes (P < .05; 2000 m < 3000 m < 4000 m). PPO was maintained in all sets except for set 3 at 4000 m (P < .05; vs sea level and 2000 m). BLa levels were highest at 4000 m and significantly greater (P < .05) than at sea level after all sets.

Conclusions:

These results suggest that “higher may not be better,” as a simulated altitude of 4000 m may potentially blunt absolute training quality. Therefore, it is recommended that a moderate simulated altitude (2000–3000 m) be employed when implementing intermittent hypoxic repeat-sprint training for team-sport athletes.