Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Gregory C. Bogdanis x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Improvement of Long-Jump Performance During Competition Using a Plyometric Exercise

Gregory C. Bogdanis, Athanasios Tsoukos, and Panagiotis Veligekas

Purpose:

To examine the acute effects of a conditioning plyometric exercise on long-jump performance during a simulated long-jump competition.

Methods:

Eight national-level track and field decathletes performed 6 long-jump attempts with a full approach run separated by 10-min recoveries. In the experimental condition subjects performed 3 rebound vertical jumps with maximal effort 3 min before the last 5 attempts, while the 1st attempt served as baseline. In the control condition the participants performed 6 long jumps without executing the conditioning exercise.

Results:

Compared with baseline, long-jump performance progressively increased only in the experimental condition, from 3.0%, or 17.5 cm, in the 3rd attempt (P = .046, d = 0.56), to 4.8%, or 28.2 cm, in the 6th attempt (P = .0001, d = 0.84). The improvement in long-jump performance was due to a gradual increase in vertical takeoff velocity from the 3rd (by 8.7%, P = .0001, d = 1.82) to the 6th jump (by 17.7%, P = .0001, d = 4.38). Horizontal-approach velocity, takeoff duration, and horizontal velocity at takeoff were similar at all long-jump attempts in both conditions (P = .80, P = .36, and P = .15, respectively).

Conclusions:

Long-jump performance progressively improved during a simulated competition when a plyometric conditioning exercise was executed 3 min before each attempt. This improvement was due to a progressive increase in vertical velocity of takeoff, while there was no effect on the horizontal velocity.

Restricted access

Acute Resistance Exercise: Physiological and Biomechanical Alterations During a Subsequent Swim Training Session

Gavriil G. Arsoniadis, Gregory C. Bogdanis, Gerasimos Terzis, and Argyris G. Toubekis

Purpose: To examine the acute effect of dry-land strength training on physiological and biomechanical parameters in a subsequent swim training session. Methods: Twelve male swimmers (age: 19.0 [2.2] y, peak oxygen uptake: 65.5 [11.4] mL·kg−1·min−1) performed a 5 × 200-m test with progressively increasing intensity. Blood lactate (BL) concentration was measured after each 200-m bout, and the speed corresponding to 4 mmol·L−1 (V4) was calculated. In the experimental (EXP) and control (CON) conditions, swimmers participated in a swim training session consisting of 1000-m warm-up, a bout of 10-second tethered swimming sprint, and 5 × 400 m at V4. In EXP condition, swimmers completed a dry-land strength training session (load: 85% of 1-repetition maximum) 15 minutes before the swimming session. In CON condition, swimmers performed the swimming session only. Oxygen uptake, BL concentration, arm-stroke rate, arm-stroke length, and arm-stroke efficiency were measured during the 5 × 400 m. Results: Force in the 10-second sprint was not different between conditions (P = .61), but fatigue index was higher in the EXP condition (P = .03). BL concentration was higher in EXP condition and showed large effect size at the fifth 400-m repetition compared with CON condition (6.4 [2.7] vs 4.6 [2.8] mmol·L−1, d = 0.63). During the 5 × 400 m, arm-stroke efficiency remained unchanged, arm-stroke length was decreased from the third repetition onward (P = .01), and arm-stroke rate showed a medium increment in EXP condition (d = 0.23). Conclusions: Strength training completed 15 minutes before a swim training session caused moderate changes in biomechanical parameters and increased BL concentration during swimming. Despite these changes, swimmers were able to maintain force and submaximal speed during the endurance training session.

Restricted access

Physiological Responses and Swimming-Performance Changes Induced by Altering the Sequence of Training Sets

Ioannis S. Nikitakis, Gregory C. Bogdanis, Giorgos P. Paradisis, and Argyris G. Toubekis

Purpose: Interval-training sets may be applied in a different sequence within a swimming training session. The aim of this study was to investigate the effect of different set sequences on performance and physiological responses in a training session. Methods: Twelve highly trained male swimmers performed 4 sessions in randomized order. Each session included a different combination of 2 training sets: set A–set C, set C–set A, set B–set C, or set C–set B. Set A consisted of 8 × 200 m at speed corresponding to lactate threshold (30-s recovery), set B included 8 × 100 m at maximum aerobic speed (30-s recovery), and set C included 4 × 50-m all-out swimming (2-min recovery). Performance and physiological responses (lactate concentration, pH, base excess, bicarbonate, heart rate, and heart-rate variability) were measured. Results: Performance in each set was similar between sessions irrespective of set sequence. Blood lactate, heart rate, and acid–base responses during set C were similar in all sessions, but blood lactate was higher in sets A and B during C–A and C–B sessions (P = .01). The overall blood lactate and acid–base response was higher in C–A and C–B sessions compared with A–C and B–C sessions, respectively (P = .01). Heart-rate variability in each set, separately as well as the overall session effect, did not differ and was thus independent to the set sequence applied. Conclusions: Training sessions including all-out swimming as a first set increase the magnitude of metabolic responses to the subsequent aerobic-dominated training set.

Restricted access

Effects of Dryland Training During the COVID-19 Lockdown Period on Swimming Performance

Gavriil G. Arsoniadis, Petros G. Botonis, Alexandros I. Tsoltos, Alexandros D. Chatzigiannakis, Gregory C. Bogdanis, Gerasimos D. Terzis, and Argyris G. Toubekis

Purpose: To examine the effect of dryland training during an 11-week lockdown period due to COVID-19 on swimming performance. Methods: Twelve competitive swimmers performed 50- and 300-m maximum-effort tests in their preferred stroke and 200-, 400-, and four 50-m front crawl sprints (4 × 50 m) before and after the lockdown period. Critical speed as an index of aerobic endurance was calculated using (1) 50-, 300-, and (2) 200-, 400-m tests. Blood lactate concentration was measured after the 400- and 4 × 50-m tests. To evaluate strength-related abilities, the dryland tests included handgrip and shoulder isometric strength. Tethered swimming force was measured during a 10-second sprint. During the lockdown period, dryland training was applied, and the session rating of perceived exertion training (sRPE) load was recorded daily. Results: sRPE training load during the lockdown was decreased by 78% (16%), and critical speed was reduced 4.7% to 4.9% compared to prelockdown period (P < .05). Performance time in 200, 300, and 400 m deteriorated 2.6% to 3.9% (P < .05), while it remained unaltered in 4 × 50- and 50-m tests (P > .05). Tethered force increased 9% (10%) (P < .01), but handgrip and shoulder isometric force remained unaltered (P > .05). Blood lactate concentration decreased 19% (21%) after the 400-m test and was unchanged following the 4 × 50-m tests (P > .05). Conclusions: Performance deterioration in the 200, 300, and 400 m indicates reduced aerobic fitness and impaired technical ability, while strength and repeated-sprint ability were maintained. When a long abstention from swimming training is forced, dryland training may facilitate preservation in short-distance but not middle-distance swimming performance.