Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Gregory Dupont x
Clear All Modify Search
Restricted access

Georges Baquet, Gregory Dupont, François-Xavier Gamelin, Julien Aucouturier and Serge Berthoin

This study aimed to compare the effect of active recovery (AR) versus passive recovery (PR) on time to exhaustion and time spent at high percentages of peak oxygen uptake (peakV˙O2) during short, high-intensity intermittent exercises in children. Twelve children (9.5 [0.7] y) underwent a graded test and 2 short, high-intensity intermittent exercises (15 s at 120% of maximal aerobic speed) interspersed with either 15 seconds of AR (50% of maximal aerobic speed) or 15-second PR until exhaustion. A very large effect (effect size = 2.42; 95% confidence interval, 1.32 to 3.52) was observed for time to exhaustion in favor of longer time to exhaustion with PR compared with AR. Trivial or small effect sizes were found for peakV˙O2, peakHR, and peak ventilation between PR and AR, while a moderate effect in favor of higher average V˙O2 values (effect size = −0.87; 95% confidence interval, −1.76 to −0.01) was found using AR. The difference between PR and AR for the time spent above 80% (t80%) and 90% (t90%) of peakV˙O2 was trivial. Despite the shorter running duration in AR, similar t80% and t90% were spent with AR and PR. Time spent at a high percentage of peakV˙O2 may be attained by running 3-fold shorter using AR compared with using PR.

Restricted access

Abd-Elbasset Abaïdia, Julien Lamblin, Barthélémy Delecroix, Cédric Leduc, Alan McCall, Mathieu Nédélec, Brian Dawson, Georges Baquet and Grégory Dupont

Purpose:

To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage.

Methods:

Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at –110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise.

Results:

Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = –0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = –0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = –0.68; 90% CI = –1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = –0.62; 90% CI = –1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes.

Conclusions:

CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24–48 h postexercise.