Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Hae-Dong Lee x
  • All content x
Clear All Modify Search
Restricted access

Luciana Brondino, Esther Suter, Hae-Dong Lee, and Walter Herzog

Muscle inhibition (MI) in human knee extensors increases with increasing maximal voluntary force as a function of knee angle. It was speculated that this angle-dependent MI was modulated by force-dependent feedback, likely Golgi tendon organ pathways. Such angle-dependent MI is of clinical and theoretical importance. The purpose of this study was to determine MI in human elbow flexors for maximal voluntary contractions. Muscle inhibition, elbow flexor force, and electromyographic (EMG) activity were measured in 31 volunteers at elbow angles between 30º and 120º. MI and elbow flexor EMG were the same at all elbow angles. Maximal isometric forces were greatest at the 70º angle, and never fell below 70% of the peak force at any of the tested angles. From these results it is concluded that force-dependent modulation of MI did not occur in the elbow flexors, possibly because maximal isometric force remained relatively close (within 30%) to the peak force. In contrast, force-dependent modulation of MI occurred in the knee extensors at the most extended angles, when the average knee extensor force had dropped to 50% or less of the maximal knee extensor force. It is likely that human maximal voluntary contractions are not associated with a given activation. Rather, activation appears to be modulated by force-dependent feedback at force levels below 70% of the absolute peak force, which manifests itself in a change of MI that parallels the level of maximal isometric force in voluntary contractions.

Restricted access

Seong-won Han, Dae-yeon Lee, Dong-Sung Choi, Boram Han, Jin-Sun Kim, and Hae-Dong Lee

This study aimed to examine whether muscle force and tendon stiffness in a muscle-tendon complex alter synchronously following 8-week whole-body vibration (WBV) training in older people. Forty older women aged 65 years and older were randomly assigned into control (CON, n = 15) and whole-body vibration (WBV) training groups (exposure time, n = 13; vibration intensity, n = 12). For the training groups, a 4-week detraining period was completed following the training period. Throughout the training/detraining period, force of the medial gastrocnemius (MG) muscle and stiffness of the Achilles tendon were assessed four times (0, 4, 8, and 12 weeks) using a combined system of dynamometer and ultrasonography. While muscle force gradually increased throughout the training period (p < .05), a significant increase in tendon stiffness was observed after 8 weeks (p < .05). These findings indicated that, during the early phase of WBV training, muscle force and tendon stiffness changed asynchronously, which might be a factor in possible musculotendinous injuries.