Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Halla B. Olafsdottir x
Clear All Modify Search
Restricted access

Halla B. Olafsdottir, Sun Wook Kim, Vladimir M. Zatsiorsky and Mark L. Latash

We tested the ability of healthy elderly persons to use anticipatory synergy adjustments (ASAs) prior to a self-triggered perturbation of one of the fingers during a multifinger force production task. An index of a force-stabilizing synergy was computed reflecting covariation of commands to fingers. The subjects produced constant force by pressing with the four fingers of the dominant hand on force sensors against constant upwardly directed forces. The middle finger could be unloaded either by the subject pressing the trigger or unexpectedly by the experimenter. In the former condition, the synergy index showed a drop (interpreted as ASA) prior to the time of unloading. This drop started later and was smaller in magnitude as compared with ASAs reported in an earlier study of younger subjects. At the new steady state, a new sharing pattern of the force was reached. We conclude that aging is associated with a preserved ability to explore the flexibility of the mechanically redundant multifinger system but a decreased ability to use feed-forward adjustments to self-triggered perturbations. These changes may contribute to the documented drop in manual dexterity with age.

Restricted access

Wei Zhang, Halla B. Olafsdottir, Vladimir M. Zatsiorsky and Mark L. Latash

We studied the mechanical variables (the grip force and the total moment of force) and multidigit synergies at two levels (the virtual finger-thumb level, VF-TH, and the individual finger level, IMRL) of a hypothetical control hierarchy during accurate rotation of a hand-held instrumented handle. Synergies were defined as covaried changes in elemental variables (forces and moments of force) that stabilize the output at a particular level. Indices of multidigit synergies showed higher values at the hierarchically higher level (VF-TH) for both normal and tangential forces. The moment of force was stabilized at both hierarchical levels during the steady-state phases but not during the movement. The results support the principles of superposition and of mechanical advantage. They also support an earlier hypothesis on an inherent tradeoff between synergies at the two hierarchical levels, although the controller showed more subtle and versatile synergic control than the one hypothesized earlier.