Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Heather M. Logan-Sprenger x
  • All content x
Clear All Modify Search
Restricted access

Adam J. Pinos, David J. Bentley, and Heather M. Logan-Sprenger

Purpose: The purpose of this study was to compare 4 weeks of pool-based sprint interval training with a similar ergometer training intervention on a maximal anaerobic lactate test (MANLT), 50-m (competition) freestyle performance, and 6- and 30-second maximal swimming ergometer performances. Methods: A total of 14 competitive adolescent swimmers (male, n = 8; female, n = 6) participated in this study. Swimmers were categorized into 2 sex-matched groups: swimming ergometer (ERG; n = 7) and pool-sprint training (n = 7) groups. Each athlete performed 4 preintervention and postintervention assessments consisting of a MANLT, a 50-m freestyle race, and 6- and 30-second maximal swim ERG performances. Results: Both groups demonstrated a significant effect (P < .05) of time for all assessments. Group differences were observed after 4 weeks of sprint interval training as follows: (1) The ERG group had a significantly faster speed in the fourth 50-m MANLT sprint (ERG 1.58 [0.05] vs pool-sprint training 1.48 [0.07] m/s, P < .01) and (2) The ERG group demonstrated enhanced Δblood lactate post-MANLT (ERG 2.4 [1.2] vs pool-sprint training 2.7 [0.9] mmol/L, P < .05). A significant correlation was found between the 30-second maximal ERG test and 50-m freestyle swimming velocity (r = .74, P < .01, effect size = 0.52). Conclusions: The results demonstrate significant physiological improvements to anaerobic sprint ability after 4 weeks of sprint interval training in both swim ERG and pool-based interventions. Thus, sprint ability may be improved through multiple modalities (pool and dry land) to elicit a positive training response.

Restricted access

Heather M. Logan-Sprenger, George J. F. Heigenhauser, Graham L. Jones, and Lawrence L. Spriet

This study investigated the effects of progressive mild dehydration during cycling on whole-body substrate oxidation and skeletal-muscle metabolism in recreationally active men. Subjects (N = 9) cycled for 120 min at ~65% peak oxygen uptake (VO2peak 22.7 °C, 32% relative humidity) with water to replace sweat losses (HYD) or without fluid (DEH). Blood samples were taken at rest and every 20 min, and muscle biopsies were taken at rest and at 40, 80, and 120 min of exercise. Subjects lost 0.8%, 1.8%, and 2.7% body mass (BM) after 40, 80, and 120 min of cycling in the DEH trial while sweat loss was not significantly different between trials. Heart rate was greater in the DEH trial from 60 to 120 min, and core temperature was greater from 75 to 120 min. Rating of perceived exertion was higher in the DEH trial from 30 to 120 min. There were no differences in VO2, respiratory-exchange ratio, total carbohydrate (CHO) oxidation (HYD 312 ± 9 vs. DEH 307 ± 10 g), or sweat rate between trials. Blood lactate was significantly greater in the DEH trial from 20 to 120 min with no difference in plasma free fatty acids or epinephrine. Glycogenolysis was significantly greater (24%) over the entire DEH vs. HYD trial (433 ± 44 vs. 349 ± 27 mmol · kg−1 · dm−1). In conclusion, dehydration of <2% BM elevated physiological parameters and perceived exertion, as well as muscle glycogenolysis, during exercise without affecting whole-body CHO oxidation.

Restricted access

Erica H. Gavel, Heather M. Logan-Sprenger, Joshua Good, Ira Jacobs, and Scott G. Thomas

Purpose: The effects of menthol (MEN) mouth rinse (MR) on performance, physiological, and perceptual variables in female cyclists during a 30-km independent time trial (ITT) were tested. Methods: The participants (n = 9) cycled for 30 km in hot conditions (30°C [0.6°C], 70% [1%] relative humidity, 12 [1] km/h wind speed) on 2 test occasions: with a placebo MR and with MEN MR. Handgrip and a 5-second sprint were measured before, following the first MR, and after the ITT. Ratings of perceived exertion Borg 6 to 20, thermal sensation, and thermal pleasantness were recorded every 5 km. Core temperature and heart rate were recorded throughout. Results: The ITT performance significantly improved with MEN MR by 2.3% (2.7%) relative to the placebo (62.6 [5.7] vs 64.0 [4.9] min P = .034; d = 0.85; 95% confidence interval, 0.14 to 2.8 min). The average power output was significantly higher in the MEN trial (P = .031; d = 0.87; 95% confidence interval, 0.9 to 15.0 W). No significant interaction of time and MR for handgrip (P = .581, η 2 = .04) or sprint was observed (P = .365, η 2 = .103). Core temperature, heart rate, ratings of perceived exertion, and thermal sensation did not significantly differ between trials at set distances (P > .05). Pleasantness significantly differed between the placebo and MEN only at 5 km, with no differences at other TT distances. Conclusion: These results suggest that a nonthermal cooling agent can improve 30-km ITT performance in female cyclists, although the improved performance with MEN MR is not due to altered thermal perception.