Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Henry Lukaski x
Clear All Modify Search
Restricted access

Henry C. Lukaski

Mineral elements, including magnesium, zinc, and copper, are required by the body in modest amounts for the maintenance of health and for the development of optimal physiological function. For athletes, adequate amounts of these minerals are required for physical training and performance. Studies of athletes during training, as compared to nontraining control subjects, indicate the potential for increased losses of minerals in sweat and urine. Some studies report suboptimal intakes of minerals, particularly among athletes who are actively attempting to lose weight to meet standards for competition. However, most athletes consume diets that provide adequate amounts of minerals to meet population standards. Athletes should be counseled to consume foods with high nutrient density rather than to rely on mineral supplements. General use of mineral supplements can alter physiological function and impair health.

Restricted access

Scott J. Montain, Samuel N. Cheuvront and Henry C. Lukaski

Context:

Uncertainty exists regarding the effect of sustained sweating on sweat mineral-element composition.

Purpose:

To determine the effect of multiple hours of exercise-heat stress on sweat mineral concentrations.

Methods:

Seven heat-acclimated subjects (6 males, 1 female) completed 5 × 60 min of treadmill exercise (1.56 m/s, 2% grade) with 20 min rest between exercise periods in 2 weather conditions (27 °C, 40% relative humidity, 1 m/s and 35 °C, 30%, 1 m/s). Sweat was collected from a sweat-collection pouch attached to the upper back during exercise bouts 1, 3, and 5. Mineral elements were determined by using inductively coupled plasma-emission spectrography.

Results:

At 27 °C, sweat sodium (863 [563] µg/mL; mean [SD]), potassium (222 [48] µg/mL), calcium (16 [7]) µg/mL), magnesium (1265 [566] ng/mL), and copper (80 [56] ng/mL) remained similar to baseline over 7 h of exercise-heat stress, whereas sweat zinc declined 42–45% after the initial hour of exercise-heat stress (Ex1 = 655 [362], Ex3 = 382 [168], Ex5 = 355 [288] µg/mL, P < 0.05). Similar outcomes were observed for sweat zinc at 35 °C when sweat rates were higher. Sweat rate had no effect on sweat trace-element composition.

Conclusions:

Sweat sodium, potassium, and calcium losses during multiple hours of sustained sweating can be predicted from initial sweat composition. Estimates of sweat zinc losses, however, will be overestimated if sweat zinc conservation is not accounted for in sweat zinc-loss estimates.

Restricted access

Francesco Campa, Hannes Gatterer, Henry Lukaski and Stefania Toselli

Purpose: The exercise-induced increase in skin and body temperature, cutaneous blood flow, and electrolyte accumulation on the skin affects the validity of bioimpedance analysis to assess postexercise changes in hydration. This study aimed to assess the influence of a 10-min cold (22°C) shower on the time course of impedance measurements after controlled exercise. Methods: In total, 10 male athletes (age 26.2 [4.1] y and body mass index 23.9 [1.7] kg/m2) were tested on 2 different days. During both trials, athletes ran for 30 min on a treadmill in a room at 23°C. In a randomized crossover trial, the participants underwent a 10-min cold shower on the trial occasion and did not shower in the control trial. Bioimpedance analysis variables were measured before running (ie, baseline [T0]), immediately after exercising (T1), and 20 (T2), 40 (T3), and 60 min (T4) after the exercise. The shower was performed after T1 in the shower trial. Results: Body weight decreased similarly in both trials (−0.4% [0.1%], P < .001; −0.4% [0.1%], P < .001). Resistance and vector length returned to baseline at T2 in the shower trial, whereas baseline values were achieved at T3 in the control trial (P > .05). In the control trial, reactance remained at a lower level for the entire testing period (38.1 [6.9] vs 37.3 [6.7], P < .001). Forehead skin temperature returned to baseline values at T2 with shower, whereas it was still high at T4 without shower (P < .001). Conclusions: The present data show that a 10-min cold shower enables the stabilization of bioimpedance analysis measurements within 20 min after exercise, which might facilitate the assessment of hydration change after exercise.

Restricted access

Lindsay B. Baker, John R. Stofan, Henry C. Lukaski and Craig A. Horswill

Simultaneous whole-body wash-down (WBW) and regional skin surface sweat collections were completed to compare regional patch and WBW sweat calcium (Ca), magnesium (Mg), copper (Cu), manganese (Mn), iron (Fe), and zinc (Zn) concentrations. Athletes (4 men, 4 women) cycled in a plastic open-air chamber for 90 min in the heat. Before exercise, the subjects and cycle ergometer (covered in plastic) were washed with deionized water. After the onset of sweating, sterile patches were attached to the forearm, back, chest, forehead, and thigh and removed on saturation. After exercise, the subjects and cycle ergometer were washed with 5 L of 15-mM ammonium sulfate solution to collect all sweat minerals and determine the volume of unevaporated sweat. Control trials were performed to measure mineral contamination in regional and WBW methods. Because background contamination in the collection system was high for WBW Mn, Fe, and Zn, method comparisons were not made for these minerals. After correction for minimal background contamination, WBW sweat [Ca], [Mg], and [Cu] were 44.6 ± 20.0, 9.8 ± 4.8, and 0.125 ± 0.069 mg/L, respectively, and 5-site regional (weighted for local sweat rate and body surface area) sweat [Ca], [Mg], and [Cu] were 59.0 ± 15.9, 14.5 ± 4.8, and 0.166 ± 0.031 mg/L, respectively. Five-site regional [Ca], [Mg], and [Cu] overestimated WBW by 32%, 48%, and 33%, respectively. No individual regional patch site or 5-site regional was significantly correlated with WBW sweat [Ca] (r = –.21, p = .65), [Mg] (r = .49, p = .33), or [Cu] (r = .17, p = .74). In conclusion, regional sweat [Ca], [Mg], and [Cu] are not accurate surrogates for or significantly correlated with WBW sweat composition.

Restricted access

Henry C. Lukaski, William W. Bolonchuk, Leslie M. Klevay, David B. Milne and Harold H. Sandstead

In a pilot study, performance measures and mineral metabolism were assessed in 3 male endurance cyclists who consumed isoenergetic, isonitrogenous diets for 28-day periods in a randomized, crossover design in which dietary carbohydrate, polyunsaturated, or saturated fat contributed about 50% of daily energy intake. Peak aerobic capacity [62 ml/(kg · min)] was unaffected by diet. Endurance capacity at 70–75% peak aerobic capacity decreased with the polyunsaturated fat diet. Copper retention tended to be positive only with saturated fat. Less iron and zinc were retained (intake – losses), and fecal losses of these minerals increased with the polyunsaturated fat. Blood biochemical measures of trace element nutritional status were unaffected by diet, except serum ferritin, which tended to decrease during consumption of the polyunsaturated fat diet. These preliminary results suggest that diets high in polyunsaturated fat, particularly linoleic acid, impair absorption and utilization of iron and zinc, and possibly magnesium, and may reduce endurance performance.

Restricted access

Matthew R. Ely, Robert W. Kenefick, Samuel N. Cheuvront, Troy Chinevere, Craig P. Lacher, Henry C. Lukaski and Scott J. Montain

Heat acclimation (HA) reportedly conveys conservation in sweat micromineral concentrations when sampled from arm sweat, but time course is unknown. The observation that comprehensive cleaning of the skin surface negates sweat micromineral reductions during prolonged sweating raises the question of whether the reported HA effect is real or artifact of surface contamination.

Purpose:

To measure sweat mineral concentrations serially during HA and determine if surface contamination plays a role in the reported mineral reductions.

Methods:

Calcium (Ca), copper (Cu), magnesium (Mg), and zinc (Zn) were measured in sweat obtained from 17 male volunteers using an arm bag on Day 1, 5, and 10 of a HA protocol. To study the role of contamination, sweat was simultaneously (n = 10 subjects) sampled twice daily from a cleaned site (WASH) and unclean site (NO WASH) on the scapular surface.

Results:

Sweat Ca, Cu, and Mg from Arm Bag trended progressively downward from Day 1 to Day 10 of HA (p = .10–0.25). Micromineral concentrations from the WASH site did not change between Day 1, 5, or 10 (Ca = 0.30 ± 0.12 mmol/L, Cu 0.41 ± 0.53 μmol/L; Zn 1.11 ± 0.80 μmol/L). Surface contamination can confound sweat mineral estimates, as sweat Ca and Cu from NO WASH site were initially higher than WASH (p < .05) but became similar to WASH when sampled serially.

Conclusion:

Heat acclimation does not confer reductions in sweat Ca, Cu, Mg, or Zn. When the skin surface is not cleaned, mineral residue inflates initial sweat mineral concentrations. Earlier reports of micromineral reductions during HA may have been confounded by interday cleaning variability.