Search Results

You are looking at 1 - 10 of 38 items for

  • Author: Iñigo Mujika x
Clear All Modify Search
Restricted access

Iñigo Mujika

Restricted access

Iñigo Mujika

Restricted access

Iñigo Mujika

Restricted access

Iñigo Mujika

Detailed accounts of the training programs followed by today’s elite triathletes are lacking in the sport-science literature. This study reports on the training program of a world-class female triathlete preparing to compete in the London 2012 Olympic Games. Over 50 wk, she performed 796 sessions (303 swim, 194 bike, 254 run, 45 strength training), ie, 16 ± 4 sessions/wk (mean ± SD). Swim, bike, and run training volumes were, respectively, 1230 km (25 ± 8 km/wk), 427 h (9 ± 3 h/wk), and 250 h (5 ± 2 h/wk). Training tasks were categorized and prescribed based on heart-rate values and/or speeds and power outputs associated with different blood lactate concentrations. Training performed at intensities below her individual lactate threshold (ILT), between the ILT and the onset of blood lactate accumulation (OBLA), and above the OBLA for swim were 74% ± 6%, 16% ± 2%, 10% ± 2%; bike 88% ± 3%, 10% ± 1%, 2.1% ± 0.2%; and run 85% ± 2%, 8.0% ± 0.3%, 6.7% ± 0.3%. Training organization was adapted to the busy competition calendar (18 events, of which 8 were Olympic-distance triathlons) and continuously responded to emerging information. Training volumes were 35–80% higher than those previously reported for elite male and female triathletes, but training intensity and tapering strategies successfully followed recommended best practice for endurance athletes. This triathlete placed 7th in London 2012, and her world ranking improved from 14th to 8th at the end of 2012.

Restricted access

Iñigo Mujika

The training stimulus in competitive sports is usually described as a combination of training intensity, volume and frequency. It is generally believed that these three factors produce an adaptive response in the body that should lead to improved performance.1,p395

Restricted access

Iñigo Mujika

Restricted access

Iñigo Mujika

Restricted access

Iñigo Mujika

Restricted access

Iñigo Mujika

Age-related fitness declines in athletes can be due to both aging and detraining. Very little is known about the physiological and performance decline of professional cyclists after retirement from competition. To gain some insight into the aging and detraining process of elite cyclists, 5-time Tour de France winner and Olympic Champion Miguel Indurain performed a progressive cycle-ergometer test to exhaustion 14 y after retirement from professional cycling (age 46 y, body mass 92.2 kg). His maximal values were oxygen uptake 5.29 L/min (57.4 mL · kg−1 · min−1), aerobic power output 450 W (4.88 W/kg), heart rate 191 beats/min, blood lactate 11.2 mM. Values at the individual lactate threshold (ILT): 4.28 L/min (46.4 mL · kg−1 · min−1), 329 W (3.57 W/kg), 159 beats/min, 2.4 mM. Values at the 4-mM onset of blood lactate accumulation (OBLA): 4.68 L/min (50.8 mL · kg−1 · min−1), 369 W (4.00 W/kg), 170 beats/min. Average cycling gross efficiency between 100 and 350 W was 20.1%, with a peak value of 22.3% at 350 W. Delta efficiency was 27.04%. Absolute maximal oxygen uptake and aerobic power output declined by 12.4% and 15.2% per decade, whereas power output at ILT and OBLA declined by 19.8% and 19.2%. Larger declines in maximal and submaximal values relative to body mass (19.4–26.1%) indicate that body composition changed more than aerobic characteristics. Nevertheless, Indurain’s absolute maximal and submaximal oxygen uptake and power output still compare favorably with those exhibited by active professional cyclists.