Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Ida S. Svendsen x
  • Refine by Access: All Content x
Clear All Modify Search
Restricted access

Alex J. Wadley, Ida S. Svendsen, and Michael Gleeson

Altitude exposure can exaggerate the transient increase in markers of oxidative stress observed following acute exercise. However, these responses have not been monitored in endurance-trained cyclists at altitudes typically experienced while training. Endurance trained males (n = 12; mean (± SD) age: 28 ± 4 years, V̇O2max 63.7 ± 5.3 ml/kg/min) undertook two 75-min exercise trials at 70% relative V̇O2max; once in normoxia and once in hypobaric hypoxia, equivalent to 2000m above sea level (hypoxia). Blood samples were collected before, immediately after and 2 h postexercise to assess plasma parameters of oxidative stress (protein carbonylation (PC), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) and catalase activity (CAT)). Participants cycled at 10.5% lower power output in hypoxia vs. normoxia, with no differences in heart rate, blood lactate or rating of perceived exertion observed. PC increased and decreased immediately after exercise in hypoxia and normoxia respectively (nmol/mg/protein: Normoxia—0.3 ± 0.1, Hypoxia + 0.4 ± 0.1; both p < .05). CAT increased immediately postexercise in both trials, with the magnitude of change greater in hypoxia (nmol/min/ml: Normoxia + 12.0 ± 5.0, Hypoxia + 27.7 ± 4.8; both p < .05). CAT was elevated above baseline values at 2 h postexercise in Hypoxia only (Normoxia + 0.2 ± 2.4, Hypoxia + 18.4 ± 5.2; p < .05). No differences were observed in the changes in TBARS and TAC between hypoxia and normoxia. Trained male cyclists demonstrated a differential pattern/ timecourse of changes in markers of oxidative stress following submaximal exercise under hypoxic vs. normoxic conditions.

Restricted access

Ida S. Svendsen, Espen Tønnesen, Leif Inge Tjelta, and Stein Ørn

Purpose: To determine whether training, performance, or physiological variables at age 18 can predict which athletes become World Tour (WT) riders at senior level. Methods: Based on performance level at age 23, 80 competitive male cyclists were retrospectively categorized into 4 groups: retired (n = 21), club (n = 26), continental (n = 24), or WT (n = 9). Data collected at age 18 were analyzed to determine whether training, performance, or physiological variables differed significantly between groups. Results: At age 23, 9 riders (11%) were WT level. These riders competed significantly more at age 18 than athletes who were club level (91.5 [19.1] h vs 62.8 [21.8] h, P = .032) or retired by age 23 (61.8 [23.4] h, P = .014). WT athletes placed significantly better in national road championships at age 18 than did continental, club, and retired athletes (all P < .01). Receiver-operating-characteristic analysis showed that placing at national championships at age 18 had good accuracy in predicting whether the athlete would later reach WT level (area under the curve = 0.882). WT athletes had significantly higher maximal aerobic power at age 18 than athletes who did not reach WT level (533 [23] vs 451 [41] W and 6.9 [0.4] vs 6.2 [0.4] W/kg, P < .05). Conclusion: Already at junior level, there were performance and physiological differences distinguishing those who later became WT riders. The findings emphasize the need for high volumes of training and competition, as well as a high level of race performance already at junior level, to become a successful elite road cyclist.

Restricted access

Espen Tønnessen, Vegard Rasdal, Ida S. Svendsen, Thomas A. Haugen, Erlend Hem, and Øyvind Sandbakk

Performing at an elite level in Nordic combined (NC) requires both the explosiveness required for ski jumping performance and the endurance capacity required for cross-country skiing.


To describe the characteristics of world-class NC athletes’ training and determine how endurance and non–endurance (ie, strength, power, and ski jumping) training is periodized.


Annual training characteristics and the periodization of endurance and non–endurance training were determined by analyzing the training diaries of 6 world-class NC athletes.


Of 846 ± 72 annual training hours, 540 ± 37 h were endurance training, with 88.6% being low-, 5.9% moderate-, and 5.5% high-intensity training. While training frequency remained relatively constant, the total training volume was reduced from the general preparatory to the competition phase, primarily due to less low- and moderate-intensity training (P < .05). A total of 236 ± 55 h/y were spent as non–endurance training, including 211 ± 44 h of power and ski-jump-specific training (908 ± 165 ski jumps and ski-jump imitations). The proportion of non–endurance training increased significantly toward the competition phase (P < .05).


World-class NC athletes reduce the volume of low- and moderate-intensity endurance training toward the competition phase, followed by an increase in the relative contribution of power and ski-jump training. These data provide novel insight on how successful athletes execute their training and may facilitate more-precise coaching of future athletes in this sport. In addition, this information is of high relevance for the training organization of other sports that require optimization of 2 fundamentally different physical capacities.

Restricted access

Espen Tønnessen, Ida S. Svendsen, Bent R. Rønnestad, Jonny Hisdal, Thomas A. Haugen, and Stephen Seiler

One year of training data from 8 elite orienteers were divided into a transition phase (TP), general preparatory phase (GPP), specific preparatory phase (SPP), and competition phase (CP). Average weekly training volume and frequency, hours at different intensities (zones 1–3), cross-training, running, orienteering, interval training, continuous training, and competition were calculated. Training volume was higher in GPP than TP, SPP, and CP (14.9 vs 9.7, 11.5, and 10.6 h/wk, P < .05). Training frequency was higher in GPP than TP (10 vs 7.5 sessions/wk, P < .05). Zone 1 training was higher in GPP than TP, SPP, and CP (11.3 vs 7.1, 8.3, and 7.7 h/wk, P < .05). Zone 3 training was higher in SPP and CP than in TP and GPP (0.9 and 1.1 vs 1.6 and 1.5 h/wk, P < .05). Cross-training was higher in GPP than SPP and CP (4.3 vs 0.8 h/wk, P < .05). Interval training was higher in GPP than TP, SPP, and CP (0.7 vs 0.3 h/wk, P < .05). High-intensity continuous training was higher in GPP than CP (0.9 vs 0.4 h/wk, P < .05), while competition was higher in SPP and CP than in TP and GPP (1.3 and 1.5 vs 0.6 and 0.3 h/wk, P < .01). In conclusion, these champion endurance athletes achieved a progressive reduction in total training volume from GPP to CP via a shortening of each individual session while the number of training sessions remained unchanged. This decrease in training volume was primarily due to a reduction in the number of hours of low-intensity, non-sport-specific cross-training.

Restricted access

Thomas Losnegard, Sondre Skarli, Joar Hansen, Stian Roterud, Ida S. Svendsen, Bent R. Rønnestad, and Gøran Paulsen

Purpose: Rating of perceived exertion (RPE) is a widely used tool to assess subjective perception of effort during exercise. The authors investigated between-subject variation and effect of exercise mode and sex on Borg RPE (6–20) in relation to heart rate (HR), oxygen uptake (VO2), and capillary blood lactate concentrations. Methods: A total of 160 elite endurance athletes performed a submaximal and maximal test protocol either during cycling (n = 84, 37 women) or running (n = 76, 32 women). The submaximal test consisted of 4 to 7 progressive 5-minute steps within ∼50% to 85% of maximal VO2. For each step, steady-state HR, VO2, and capillary blood lactate concentrations were assessed and RPE reported. An incremental protocol to exhaustion was used to determine maximal VO2 and peak HR to provide relative (%) HR and VO2 values at submaximal work rates. Results: A strong relationship was found between RPE and %HR, %VO2, and capillary blood lactate concentrations (r = .80–.82, all Ps < .05). The between-subject coefficient of variation (SD/mean) for %HR and %VO2 decreased linearly with increased RPE, from ∼10% to 15% at RPE 8 to ∼5% at RPE 17. Compared with cycling, running induced a systematically higher %HR and %VO2 (∼2% and 5%, respectively, P < .05) with these differences being greater at lower intensities (RPE < 13). At the same RPE, women showed a trivial, but significantly higher %HR and %VO2 than men (<1%, P < .05). Conclusions: Among elite endurance athletes, exercise mode influenced RPE at a given %HR and %VO2, with greater differences at lower exercise intensities. Athletes should manage different tools to evaluate training based on intensity and duration of workouts.