Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Israel Halperin x
Clear All Modify Search
Restricted access

Israel Halperin

Despite the progress made by the scientific exercise community in collaborating and communicating with nonscientist coaches, there is room for improvement. Coaches find research difficult to understand, feel that their interests are not being addressed by exercise research, and rely on peer discussion to further their coaching knowledge base while consuming few peer-reviewed articles. One useful strategy to bridge the science–practice gap is with case studies. In addition to furthering our understanding of the physiology, psychology, and training schedules of elite athletes, case studies can serve (1) as a useful communication channel with coaches if presented as narratives and (2) to establish and strengthen relationships between scientists and coaches, leading to fruitful research collaborations. The purpose of this invited commentary is to discuss these 2 less-recognized benefits of case studies and propose a way to incorporate case studies more frequently alongside group-based studies.

Restricted access

Antonio Dello Iacono, Marco Beato and Israel Halperin

Purpose: To compare the effects of 2 postactivation potentiation (PAP) protocols using traditional-set or cluster-set configurations on countermovement jump performance. Methods: Twenty-six male basketball players completed 3 testing sessions separated by 72 hours. On the first session, subjects performed barbell jump squats with progressively heavier loads to determine their individual optimum power load. On the second and third sessions, subjects completed 2 PAP protocols in a randomized order: 3 sets of 6 repetitions of jump squats using optimum power load performed with either a traditional-set (no interrepetition rest) or a cluster-set (20-s rest every 2 repetitions) configuration. After a warm-up, countermovement jump height was measured using a force platform before, 30 seconds, 4 minutes, and 8 minutes after completing the PAP protocols. The following kinetic variables were also analyzed and compared: relative impulse, ground reaction force, eccentric displacement, and vertical leg-spring stiffness. Results: Across both conditions, subjects jumped lower at post 30 seconds by 1.21 cm, and higher in post 4 minutes by 2.21 cm, and in post 8 minutes by 2.60 cm compared with baseline. However, subjects jumped higher in the cluster condition by 0.71 cm (95% confidence interval, 0.37 to 1.05 cm) in post 30 seconds, 1.33 cm (95% confidence interval, 1.02 to 1.65 cm) in post 4 minute, and 1.64 cm (95% confidence interval, 1.41 to 1.88 cm) in post 8 minutes. The superior countermovement jump performance was associated with enhanced kinetic data. Conclusions: Both protocols induced PAP responses in vertical jump performance using jump squats at optimum power load. However, the cluster-set configuration led to superior performance across all time points, likely due to reduced muscular fatigue.

Restricted access

Israel Halperin, Andrew D. Vigotsky, Carl Foster and David B. Pyne

Exercise and sport sciences continue to grow as a collective set of disciplines investigating a broad array of basic and applied research questions. Despite the progress, there is room for improvement. A number of problems pertaining to reliability and validity of research practices hinder advancement and the potential impact of the field. These problems include inadequate validation of surrogate outcomes, too few longitudinal and replication studies, limited reporting of null or trivial results, and insufficient scientific transparency. The purpose of this review is to discuss these problems as they pertain to exercise and sport sciences based on their treatment in other disciplines, namely psychology and medicine, and to propose a number of solutions and recommendations.

Restricted access

Antonio Dello Iacono, Stephanie Valentin, Mark Sanderson and Israel Halperin

Purpose: To investigate the test–retest reliability and criterion validity of the isometric horizontal push test (IHPT), a newly designed test that selectively measures the horizontal component of maximal isometric force. Methods: Twenty-four active males with ≥3 years of resistance training experience performed 2 testing sessions of the IHPT, separated by 3 to 4 days of rest. In each session, subjects performed 3 maximal trials of the IHPT with 3 minutes of rest between them. The peak force outputs were collected simultaneously using a strain gauge and the criterion equipment consisting of a floor-embedded force plate. Results: The test–retest reliability of peak force values was nearly perfect (intraclass correlation coefficient = ∼.99). Bland–Altman analysis showed excellent agreement between days with nearly no bias for strain gauge 1.2 N (95% confidence interval [CI], −3 to 6 N) and force plate 0.8 N (95% CI, −4 to 6 N). A nearly perfect correlation was observed between the strain gauge and force plate (r = .98, P < .001), with a small bias of 8 N (95% CI, 1.2 to 15 N) in favor of the force plate. The sensitivity of the IHPT was also good, with smallest worthwhile change greater than standard error of measurement for both the strain gauge (smallest worthwhile change: 29 N; standard error of measurement: 17 N; 95% CI, 14 to 20 N) and the force plate (smallest worthwhile change: 29 N; standard error of measurement: 18 N; 95% CI, 14 to 19 N) devices. Conclusions: The high degree of validity, reliability, and sensitivity of the IHPT, coupled with its affordability, portability, ease of use, and time efficacy, point to the potential of the test for assessment and monitoring purposes.

Restricted access

Jonathan C. Reid, Rebecca M. Greene, Nehara Herat, Daniel D. Hodgson, Israel Halperin and David G. Behm

Purpose:

Contrary to adult force reserve strategies, it is not known whether adolescent females with less experience performing maximal voluntary contractions (MVC) have specific responses to a known or unknown fatigue endpoint.

Methods:

Using a counterbalanced random crossover design, fourteen inexperienced female adolescents completed three elbow flexor (EF) fatiguing protocols. Participants were randomly assigned to a control (informed they would perform 12 MVCs), unknown (not informed of the number of MVCs to be completed, but stopped after 12) or deception condition (instructed to complete 6 MVCs, however, after the sixth repetition performed another 6 MVCs). Before and during the interventions, EF impulse, force, and biceps brachii (BB) and triceps brachii (TB) electromyography (EMG) activity were recorded. Results: Participants exhibited decreases in impulse (10.9%; p < .05), force (7.5%; p = .001), BB (16.2%; p < .05) and TB (12.9%; p < .05) EMG activity between the pretest and the first repetition of all protocols. Knowledge of endpoint, or lack of it, did not change measures with the repeated MVCs. When informed about the final repetition, force remained depressed suggesting no physiological reserve.

Conclusion:

Adolescent females exhibited an anticipatory response to the task of performing repeated MVCs. A lack of change with knowledge of endpoint indicates that those lacking in MVC experience do not employ the same pacing strategies as in previous studies of participants with MVC experience.

Restricted access

Marco Beato, Stuart A. McErlain-Naylor, Israel Halperin and Antonio Dello Iacono

Purpose: To summarize the evidence on postactivation potentiation (PAP) protocols using flywheel eccentric overload (EOL) exercises. Methods: Studies were searched using the electronic databases PubMed, Scopus, and Institute for Scientific Information Web of Knowledge. Results: In total, 7 eligible studies were identified based on the following results: First, practitioners can use different inertia intensities (eg, 0.03–0.11 kg·m2), based on the exercise selected, to enhance sport-specific performance. Second, the PAP time window following EOL exercise seems to be consistent with traditional PAP literature, where acute fatigue is dominant in the early part of the recovery period (eg, 30 s), and PAP is dominant in the second part (eg, 3 and 6 min). Third, as EOL exercises require large force and power outputs, a volume of 3 sets with the conditioning activity (eg, half-squat or lunge) seems to be a sensible approach. This could reduce the transitory muscle fatigue and thereby allow for a stronger potentiation effect compared with larger exercise volumes. Fourth, athletes should gain experience by performing EOL exercises before using the tool as part of a PAP protocol (3 or 4 sessions of familiarization). Finally, the dimensions of common flywheel devices offer useful and practical solutions to induce PAP effects outside of normal training environments and prior to competitions. Conclusions: EOL exercise can be used to stimulate PAP responses to obtain performance advantages in various sports. However, future research is needed to determine which EOL exercise modalities among intensity, volume, and rest intervals optimally induce the PAP phenomenon and facilitate transfer effects on athletic performances.